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ABSTRACT 

 

 A 12-inch diameter, 1.5-inch span crossflow fan test apparatus was constructed 

and tested using the existing Turbine Test Rig (TTR) as a power source.  Instrumentation 

was installed and a data acquisition program was developed to measure the performance 

of the crossflow fan.  Performance measurements were taken over a speed range of 1,000 

to 7,000 RPM.  Results comparable to those measured by Vought Systems Division of 

LTV Aerospace in 1975 were obtained.  At 6,000 RPM, a thrust-to-power ratio of one 

was determined; however, at 3,000 RPM twice the thrust-to-power ratio was measured.  

Flow visualization was conducted using dye-injection methods.  Performance and flow 

visualization results were compared to predictions obtained from 2-D numerical 

simulation conducted using Flo++, a commercial PC-based computational fluid dynamics 

software package by Softflo.  A possible design for a light civil V/STOL aircraft was 

suggested using a similar crossflow fan apparatus for both lift and propulsion.   
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I. INTRODUCTION 
 

A. OVERVIEW 

 
 Recently, NASA has placed emphasis on the need for a more robust civil 

transport system intended to alleviate congestion in ground and air traffic near major 

cities.  This has resulted in the creation of several programs to provide funding for 

research into various aspects of this broad goal.  One such program encourages the 

development of civil alternatives to private ground transport; the intent being to reduce 

ground traffic by replacing the private automobile with a similarly-sized and purposed 

vertical takeoff and landing (VTOL) vehicle.  This would serve the triple purpose of 

reducing ground traffic without requiring traditional airfields while simplifying the 

takeoff and landing process.  At first glance, helicopter-type designs may seem the 

obvious choice, but these aircraft are more complex than fixed-wing types and require 

capabilities far beyond those required to operate a private automobile - capabilities which 

the average civilian is not likely to possess.  Additionally, the potential for serious bodily 

harm and property damage involved in the operation of numerous rotary-winged aircraft 

in relatively close proximity makes these types of aircraft extremely risky for the general 

population.  Similarly, jet engines could create a serious fire, noise, and foreign object 

debris (FOD) hazard when used outside the controlled atmosphere of the traditional 

airfield.  They also have the additional drawback of being prohibitively expensive to 

purchase and maintain in relation to the automobile's internal combustion engine.  

Therefore, VTOL designs that do not incorporate exposed or otherwise hazardous lifting 

and propulsive devices are preferable.  The research conducted in preparation for this 

thesis was intended to evaluate one such device, the crossflow fan, to determine its 

suitability for such a purpose. 

 The Crossflow Fan Test Assembly (CFTA) was established at the Naval 

Postgraduate School Turbopropulsion Laboratory using the previously existing Turbine 

Test Rig.  This assembly was initiated by Studevan [Ref. 1] in order to test the turbine of 

the Space Shuttle Main Engine High Pressure Fuel Turbopump (SSME HPFTP).  This 

work was continued by Rutkowski [Ref. 2] and Greco [Ref. 3] and refined for laser-

1 



Doppler-velocimetry measurements by Southward [Ref. 4].  The primary goal of research 

on the crossflow fan was to determine performance characteristics by measuring 

parameters along an operating line.  Provision was made in the CFTA for optical access 

to the rotor, which allowed for flow visualization studies to be performed as part of the 

experimental testing. 

 Viscous flow through the crossflow fan was numerically modeled using the 

commercially-available FLO++ software package from Softflo.  A significant effort was 

undertaken to represent the numerical model as accurately as possible by generating a 

two-dimensional grid from computer-aided design (CAD) drawings of the CFTA.  The 

results of this simulation were compared to pressure and velocity measurements 

determined experimentally in the test cell.  FLO++ was also used to model a theoretical 

"fan-in-wing" concept in order to determine its usefulness as a high-lift device in a VTOL 

aircraft.   

2 



B. HISTORY 

 Crossflow devices have been theorized and utilized for many years.  One early 

concept that used a type of crossflow device was the Banki turbine, which was most often 

used as a hydraulic turbine generator.  In this configuration, as shown in Figure 1, water 

passed radially through the turbine and thus encountered the rotor twice, which allowed a 

more efficient passage of kinetic energy from the moving water to the turbine.  Use of the 

Banki turbine was predominantly limited to the field of hydraulic power generation, 

where low-pressure head was available at high flow rates.  

 
Figure 1. Banki Turbine (From Ref. 5) 

 Crossflow fans intended to move air have also seen much use in commercial and 

industrial applications.  Primarily, these fans are designed to move air in a linear fashion 

for heating and ventilation purposes such as “air curtains” which maintain heating and 

cooling boundaries by providing a steep velocity gradient between two temperature 

zones.  Such fans are often seen in open-bay freezers and refrigerators at supermarkets 

and above the entrances and exits of air-conditioned offices and restaurants.   
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 In 1975, Vought Systems Division (VSD) of LTV Aerospace Corporation studied 

the application of crossflow fan technology to aircraft propulsion in their Multi-Bypass 

Ratio Propulsion System Development program [Ref. 6].  This program sought to take 

advantage of the crossflow fan’s relatively compact size and form factor in developing a 

propulsion device that could easily be incorporated into conventional aircraft 

configurations with a minimum of added drag.  Another advantage cited by VSD was the 

ability to accomplish thrust vectoring with ease since the fan was insensitive to the 

angular position of inlets, outlets, and cavities.  VSD initially tested a 12-inch diameter, 

1.5-inch span crossflow fan in various configurations between 6,000 and 13,000 RPM in 

order to establish baseline performance.   Additionally, different housing or cavity 

configurations and exhaust duct shapes were tested, affording the opportunity to measure 

the performance of various crossflow fan configurations.  This allowed some measure of 

optimization to be performed.  A total of 46 different fan and housing configurations 

were tested, primarily including modifications to fan blade angles, resizing and reshaping 

of recirculation-inducing cavities, and variations in the total number of blades. 

 More recently, Moller International pioneered the design of a type of aircraft 

called the volantor, which relied primarily on thrust-producing devices for lift vice lifting 

surfaces.  Moller’s M400 Skycar was but one example of several models that were flight-

tested and are in continuing development.  This aircraft is shown in the figure below 

undergoing tethered hover tests. 

 
Figure 2. Moller M400 Skycar (From Ref. 7) 
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 The Skycar concept used four vectored-thrust ducted fans to provide both lift and 

thrust in all phases of flight.  Eight Wankel engines were used to power the fans due to 

their characteristically high power-to-weight ratio. 

Recognizing the inefficiency of using thrust-producing devices to create lift, Dean 

H. Gossett [Ref. 8] incorporated a crossflow fan as a lifting device in his proposal for a 

light civil VTOL aircraft.  His concept utilized a Wankel-driven crossflow fan solely for 

lift in order to augment two Wankel-driven ducted fan assemblies that acted in a "lift and 

cruise" capacity.  Gossett’s model, shown in Figure 3, was a wing-and-canard type air 

vehicle that relied more heavily on lifting surfaces in forward flight than the Moller 

Skycar.  The crossflow fan could be shut down in forward flight in order to improve fuel 

consumption, and reengaged upon preparation for landing.  It was felt that low reliance 

on lifting surfaces during the takeoff and landing phases of flight would eliminate some 

of the more dangerous aspects of controlling conventional fixed- and rotary-wing aircraft, 

and therefore help reduce complexity of operation to something nearly on par with the 

average automobile.  The concept eliminated the extra weight of two ducted fan 

assemblies and associated engines.   

 The crossflow fan configuration evaluated by Gossett was one of the types tested 

in the Multi-Bypass Ratio System development project.  Performance data for this 

application were taken from the project report [Ref. 6] and were used to develop the 

design shown below.   

 
Figure 3. Gossett’s Conceptual Civil Light VTOL Aircraft (From Ref. 8) 
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 A most recent development of the crossflow fan in a lift and propulsion 

application was the prototypical Fanwing short takeoff and landing (STOL) aircraft.  This 

design used an exposed, large-diameter, low revolutions-per-minute (~1,300 RPM), full-

span crossflow fan to direct high-speed airflow across the upper surface of a thick wing 

section, thereby generating lift even at zero forward airspeed.  There were no casewalls 

and no pressure cavities, since the primary purpose of the fan was to energize and redirect 

airflow over the wing providing both thrust and lift.  The concept is illustrated below in 

Figure 4. 

 
Figure 4. Fanwing Conceptual Diagram (From Ref. 9) 

 Advantages of this arrangement included: significantly increased lift as compared 

to a static wing section of similar dimension and shape; very short-takeoff capability; 

high maneuverability and stability due to relative insensitivity of the fan to the direction 

of incoming airflow; and lack of a true stall point due to continuous fan-driven airflow 

over the wing.  Wing sections were tested in wind tunnels and small-scale models were 

successfully flight-tested, which demonstrated the strong potential of the Fanwing.  The 

advantages of the Fanwing lend themselves to application to the light civil VTOL aircraft 

market.  However, vertical takeoff has not yet been demonstrated, and the presence of a 

partially exposed crossflow fan rotor may render this aircraft hazardous.  Further 

information on the Fanwing can be obtained from Ref. 9. 

 The research presented in this thesis therefore seeks to investigate the potential of 

enclosed crossflow fans as propulsion and lift devices in the personal air vehicle market.  
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Since relatively little research has been performed on the crossflow fan in aircraft 

propulsion applications, the VSD study stands as the most thorough reference on the 

topic.  Therefore, a VSD-tested design was selected to form the basis for the CFTA used 

in this ongoing research, which was complemented by a significant computational fluid 

dynamics (CFD) analysis of the unsteady flow through the device.  As reported in Ref. 6, 

VSD Fan #6 demonstrated the best power efficiency.  This fan design was therefore 

selected as the base crossflow fan model.  The general configuration of VSD Fan #6 is 

shown in Figure 5.  Performance data for this configuration is shown in Figure 6. 
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Figure 5. Vought Systems Division Fan #6 General Layout (From Ref. 6)



 
 

Figure 6. Vought Systems Division Fan #6 Performance Data (From Ref. 6)
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II. EXPERIMENTAL APPARATUS 
 

A. HARDWARE DESCRIPTION 

 

 1. Turbine Test Rig (TTR) 

 

 The previously-existing Turbine Test Rig (TTR) at the Naval Postgraduate School 

Turbopropulsion Lab was used as a power source for the Crossflow Fan Test Assembly 

(CFTA).  The TTR was comprised of an air supply system and associated piping, test 

cell, data acquisition system, and the turbine from the Space Shuttle Main Engine High-

Pressure Fuel Turbopump (SSME HPFTP).   

 A schematic of the air supply system is shown in Figure 7.  The air supply system 

consisted of a 1,250-horsepower (HP) electric motor which drove an Allis-Chalmers 12-

stage axial compressor at 12,000 RPM through a gearbox.  The compressor was capable 

of providing 10,000 cubic feet per minute of air at a maximum pressure of 30 psig.  The 

compressed air was cooled to approximately 560ºR in a water/air heat exchanger, 

relieved of moisture in a moisture trap, and measured for flow rate via an orifice plate 

prior to being supplied through piping to the test cell plenum chamber.  A separate 

reciprocal compressor and reservoir provided shop air for various uses such as supplying 

the oil mister lubrication systems and calibration of pressure instrumentation. 

 Air from the test cell plenum chamber was fed into the turbine of the SSME 

HPFTP via flow straighteners and piping.  The HPFTP assembly remained as reported in 

Ref. 4 with the exception of a longer aluminum splined drive shaft, which transferred 

power from the TTR to the CFTA.  The existing bearing housing, associated bearing 

temperature and vibration monitoring systems, and the installed once-per-revolution 

measurement system remained unmodified.  A schematic of the drive turbine is shown in 

Figure 8(a). 
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Figure 7. Schematic of Air Supply System 
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Figure 8. Schematic of Turbine Test Rig (a) and Crossflow Fan Test Assembly (b) 
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2. Crossflow Fan Test Assembly (CFTA) 

 

A schematic of the Crossflow Fan Test Assembly is shown in Figure 8(b).  The 

CFTA was based on VSD Multi-Bypass Ratio System test assembly #6.  The assembly 

consisted of a 12-inch diameter, 1.5-inch span, 30-bladed crossflow fan rotor; two 

intake/cavity components; an exhaust duct wall; a drive shaft, arbor, and associated 

bearing housing. The front face plate had identically-dimensioned aluminum and 

Plexiglas inserts, the latter to be used as a viewing window for flow visualization.  The 

primary construction material was 7065-T6 aluminum, although the bearing housing was 

constructed of SAE 4130 cold-rolled steel with a hot-rolled bearing spacer, and the drive 

shaft was of SAE 4340-300M cold-rolled annealed steel.   

The fan rotor was assembled from machined disc, 30 identical rotor blade 

sections, and a front retaining ring.  Each blade was pinned in place using dowels and 

secured with Hysol epoxy E-120HP.  Prior to assembly, the blades were weighed and 

arranged in ascending order according to weight in order to to minimize subsequent rotor 

balance efforts.  The rotor disc was designed to be recessed into the back plate, seating 

flush with the back wall of the assembly.  A labyrinth seal on the tip of the rotor disc was 

used to minimize mass flow between the rotor and test assembly back plate cavity.  

Figure 9 depicts the fan in a partially assembled state. 

The rotor disc was secured to the drive shaft with machined screws.  Fafnir 

bearings were fitted between the drive shaft and the bearing housing, separated by a 

bearing spacer.  Oil misters pressurized by 40 psia shop air lubricated the bearings at a 

rate of approximately one drop of oil per minute.  Provision was made for vibration 

monitoring on the CFTA bearing set; however, no bearing temperatures were recorded. 

The test assembly front plate provided for the replacement of the aluminum 

blanking plate with a Plexiglas viewing window.  Both the blanking plate and the 

viewing window contained inner blanks that could be rotated to provide for alternate 

positioning of pressure/temperature probes and/or dye injectors.  A labyrinth seal was 

utilized between the rotor retaining ring and the blanking plate/viewing window to 

12 



minimize leakage in the radial direction.  The intake/cavity components and exhaust duct 

wall were secured in place between the CFTA front and back plates using machine bolts.  

This arrangement will allow for relatively ease of replacement of the intake, exhaust, and 

cavities without the need for a complete redesign and remanufacture of the CFTA.   

The test cell itself was equipped with a test stand to which all components of the 

SSME HPFTP and CFTA were secured.  The steel surface of the stand allowed precise 

location and alignment of the bearing housings and CFTA.  All components were bolted 

to the test stand using machine bolts.  The CFTA could be monitored from the control 

station through a ballistic-tolerant glass window.  Additional monitoring capability was 

provided by a TV monitor connected to a remote video camera, which recorded the view 

through the Plexiglas viewing window of the CFTA.  Figure 10 is a view of the partially 

assembled CFTA. 
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Figure 9. Partially Assembled Fan 

 

 
Figure 10. Partially Assembled Crossflow Fan Test Assembly 
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B. OPERATING CONTROLS AND INSTRUMENTATION 

 

1. Control Station 

 

 The TTR and CFTA were manually operated from the control station.  The 

remotely-operated butterfly valves referred to in the air supply system description were 

controlled electrically from the operator’s console, shown in Figure 11.     

Two thermocouples measured the TTR bearing temperatures.  Both temperatures 

were displayed on the operator’s console for continuous monitoring of bearing 

performance.  One accelerometer monitored the TTR vibrations and another monitored 

vibration levels in the CFTA.  This information was recorded in a logbook during test 

runs. 

 

 

TTR Bearing 
Temperature  

RPM 
Indicator PATMOS 

Vibration 
Monitor 

Control 
Valves 

Figure 11. Control Station Operator’s Console 
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2. Instrumentation 

 

 Instrumentation for data collection consisted of five United Sensor Devices model 

USD-C-161 1/8-inch combination thermocouple/pressure probes (hereafter referred to as 

“combo probes”), 12 static pressure taps, and the TTR total pressure, total temperature, 

and once-per-revolution (OPR) measurement systems as described by Southward [Ref. 

4].  Additional equipment included the previously mentioned video camera and various 

digital still cameras for recording flow visualization results.   

 Two combo probes were installed at roughly the 10 o’clock and 2 o’clock 

(viewed from front) positions in the test assembly intake section, aligned with the 

anticipated flow direction, as shown in Figure 12 as T1 and T2.  Three combo probes 

(T3, T4, and T5 in Figure 12) were installed in the exhaust duct section in a configuration 

intended to detect pressure or temperature profiles along the centerline of the exhaust 

duct.  The combo probes were mounted through the front plate to such a depth that the 

pitot opening of each probe was at the midpoint axially between the front and back plate.   

 The 12 1/32-inch diameter static pressure taps (PA through PL in Figure 12) were 

drilled as closely as possible to the normal of the intake, cavity, or exhaust duct walls.  

Associated tubing was routed so as to remain free of the airflow, with the exception of 

the upper High Pressure Cavity tap (PG) which was routed along the intake sidewall to 

minimize interference with fan inflow.   

 All pressure taps were drilled at the midpoint of their respective assembly 

component as measured in the axial direction.  Instrument nomenclature is provided in 

Table 1.   
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Probe/Tap Type Nomenclature 

T1 Combo Pin CFF / Tin CFF (10 o’clock) 
T2 Combo Pin CFF / Tin CFF (2 o’clock)
T3 Combo Pout CFF / Tout CFF (Top)
T4 Combo Pout CFF / Tout CFF (Mid)
T5 Combo Pout CFF / Tout CFF (Bot)
A Static PA

B Static PB

C Static PC

D Static PD

E Static PE

F Static PF

G Static PG

H Static PH

I Static PI

J Static PJ

K Static PK

L Static PL

Table 1. Combo Probe / Pressure Tap Nomenclature 
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Figure 12. Combo Probe and Pressure Tap Placement 
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C. FLOW VISUALIZATION 

 

 Flow patterns in the areas viewable through the Plexiglas viewing window were 

visualized using dye injection methods.  The viewing window contained a movable inner 

blank with an instrumentation port meant for future use.  Figure 13 shows the 

arrangement of the dye injection ports.  One dye injection port was drilled through the 

center of the plug which sealed the instrumentation port at exactly two inches radius from 

the center of the fan.  For the final data run, two more holes were drilled through the 

inner blank on either side of the instrumentation port for expanded flow visualization 

capability 

 Dye injectors consisted of large-bore syringes and/or squeeze bottles connected to 

the injection ports via surgical tubing.  These injectors were manually operated from the 

test cell.  A mixture of distilled water and commercially available food coloring served as 

the dye.  The same video recorder used to monitor the fan from the control station was 

used to record the flow visualization results.  Several digital cameras were also available 

to record still pictures of the results. 

 

 
Figure 13. Dye Injection Ports on Inner Blank 
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D. DATA ACQUISITION SYSTEM 

 

 1. Hardware 

 

 The data acquisition system remained essentially unchanged from that described 

in Ref. 10.  A schematic of the system is shown in Figure 14. 
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Figure 14. Data Acquisition System Hardware (After Ref. 10) 

Major changes included the addition of four thermocouple lines and the deletion 

 dynamometer load cell strain gauge signal lines used in Ref. 3.  Thermocouple and 

ure lines were reassigned as necessary.  Control of the thermocouple multiplexer, 

valve 48-port transducer, and counter / totalizer was accomplished as outlined in 

0. 

Table 2 lists the Scanivalve port assignments for the pressure lines.  Table 3 lists 

ocouple multiplexer channel assignments for thermocouple lines 
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Port # Type Nomenclature 

1 Static PATMOS 
2 Static PCAL

3 Total PinTTR (5 o’clock) 
4 Total PoutTTR  
5 Total PinTTR (8 o’clock) 
6 Total PinCFF (2 o’clock) 
7 Total PinCFF (10 o’clock) 
8 Total PoutCFF (Top) 
9 Total PoutCFF (Mid) 

10 Total PoutCFF (Bot) 
11 Static PA 
12 Static PB 
13 Static PC 
14 Static PD 
15 Static PE 
16 Static PF 
17 Static PG 
18 Static PH 
19 Static PI 
20 Static PJ 
21 Static PK 
22 Static PL 

   
32 Static Pin 
33 Static Pin(Flange) 
34 Static Pout(Flange) 
35 Static Pout(Vena) 

 

Table 2. Scanivalve Port Assignments 

 

Multiplexer Channel Nomenclature 

6 TinCFF (2 o’clock)
8 TinCFF (10 o’clock)
9 TinTTR (8 o’clock) 

10 TinTTR (5 o’clock) 
11 ToutTTR 
12 TinOrifice 
13 ToutCFF (Bot) 
14 ToutCFF (Mid) 
15 ToutCFF (Top) 

 

Table 3. Thermocouple Scanning Multiplexer Channel Assignments 
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 2. Software 

 

 Elements of the data acquisition and instrumentation control program [Ref. 10] 

were incorporated into the HPVEE-based program used in this research.  Appropriate 

changes were made to Scanivalve ports and thermocouple multiplexer channels.  A 

routine was created to write raw and reduced data to a single tab-delimited file as 

opposed to the previous scheme’s multiple output files.  The new export file was 

designed to be imported into Microsoft Excel for further data manipulation, with a 

minimum of effort.  Finally, the user control panel was redesigned to provide immediate 

display of both raw and reduced data upon cycling through all the instruments.  Figure 15 

shows the user control panel.  Further HPVEE schematics for this data acquisition 

program can be found in Appendix A. 

 

 
 

Figure 15. Data Acquisition System User Control Panel 
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E. OPERATIONAL PROCEDURES AND TEST PROGRAM 

  

 1. Procedures 

 

The Allis-Chalmers compressor was started by a technician and brought up to 

speed slowly, normally over a period of one to two hours.  Flow control was achieved 

using two remotely-operated butterfly-type valves.  One valve was located upstream of 

the orifice plate and was used to control mass flow to the SSME HPFTP, thereby 

controlling power output to the CFTA and thus RPM.  The other valve was located 

downstream of the orifice plate and was used as an atmospheric dump.  It was necessary 

to close this valve completely in order to obtain reliable mass flow measurements for 

power calculations.  After the compressor startup period, the crossflow fan was started by 

opening the test cell butterfly valve slowly while simultaneously closing the dump valve 

downstream of the TTR.  With the TTR valve open approximately 20% and the first 

dump valve fully closed, the CFTA attained about 2,000 RPM.  At this condition mass 

flow rate measurements through the TTR were accurate.  Orifice plate mass flow rate 

measurements were performed in accordance with Vavra's technical note describing the 

method [Ref. 11].   

A typical test began once speed reached 2,000 RPM.  After allowing 

approximately one minute for the system to stabilize, the HPVEE program was activated.  

This initiated the Scanivalve pressure port scanning cycle, the thermocouple multiplexer, 

and a routine which calculated the average fan speed over the pressure scanning cycle.  

Once the cycle was complete, raw data were automatically reduced and recorded as a 

new line on a text file.  A combination of raw and reduced data was then displayed on the 

user control panel. 

 Once data had been recorded at a particular RPM, speed was increased in 500- or 

1,000-RPM increments by manipulating the dump valve and the turbine inlet valve.  

Typically, 500-RPM increments were used when increasing speed above 3,000 RPM, and 

1,000-RPM increments were used when decreasing speed.  The CFTA was tested up to a 
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maximum of 7,022 RPM during the course of this research.  Flow visualization was 

performed at 5,000 RPM after data had been recorded. 

 Once all desired measurements and flow visualizations were made, shutdown was 

accomplished by opening both the valves and closing the TTR valve.  The CFTA 

typically came to a full stop within 30 seconds. 

  

 2. Test Program 

 

 Table 4 summarizes the program of data-collection runs.  The CFTA was run on 

seven separate dates.  The first two were uninstrumented runs for the purpose of verifying 

bearing temperature and vibration levels as well as crossflow fan integrity.  The third run 

was an instrumented run for the purpose of debugging and refining the data acquisition 

system.  The fourth through seventh runs produced the data reported here.  The final two 

dates involved multiple startup/shutdown procedures in order to make configuration 

changes.   

 

Date Start 
Time 

Stop 
Time 

Maximum RPM 
Reached 

Number  of 
Measurement Sets 

Flow Visualization 
Performed 

29 Jan 03 1000 1138 5503 9  
7 Feb 03 1005 1130 6517 18  

19 Feb 03 1040 1127 5015 9 ! 
 1136 1200 5036 7 ! 
 1211 1228 5006 6 ! 

12 Mar 03 1023 1058 5020 4 ! 
 1130 1209 7022 12  

 

Table 4 Summary of Test Program 
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F. DATA REDUCTION 

 

 Primary data reduction was performed in the HPVEE data acquisition program.  

Additional data reduction was performed using Microsoft Excel spreadsheets.   

 As previously stated, mass flow through the TTR was calculated in accordance 

with Ref. 11.  Work produced by the TTR was then given by 

 

)( )(,, avgTTRinTTRoutpTTRTTR TTCmW −= !    (1)  

 

 where WTTR was in Btu/s,  was in lbm/s, CTTRm! p = 0.24 Btu/lbm-°R, and Tin,TTR(avg) 

was the average of the two TTR inlet total temperatures.  Mechanical efficiency of the 

bearing and shaft systems was not estimated and it was therefore assumed that WTTR = -

WCFF, where WCFF was the work input to the crossflow fan.  Mass flow through the 

crossflow fan was calculated as follows: 

 

    
)( )(,)(, avgCFFinavgCFFoutp

CFF
CFF TTC

W
−

=!m    (2) 

 

 where Tout,CFF,(avg) was the average of the three crossflow fan exhaust duct total 

temperatures and Tin CFF(avg) was the average of the two crossflow fan inlet total 

temperatures.  Total-to-total pressure and temperature ratios were similarly calculated 

using pressure averages, such that: 

 

  
)(,

)(,

avgCFFin

avgCFFout
CFF P

P
=π   and  

)(,

)(,

avgCFFin

avgCFFout
CFF T

T
=τ  (3) 

 

 Compression efficiency through the crossflow fan was calculated from the values 

found in (3) above, in the following manner: 
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 with γ=1.4.  Crossflow fan performance values were corrected to standard 

atmospheric conditions, such that 

 

δ
θmmcorr !! =  , 

θ
NNcorr = ,  

θδ
HPHPcorr =   (5) 

 

where N is fan speed in RPM, 
ref

avgCFFin

T
T )(,=θ , and 

ref

avgCFFin

P
P )(,=δ .  Tref  and Pref 

were standard atmospheric temperature (518.7 °R) and pressure (29.92 inHg), 

respectively. 

 Microsoft Excel was used to produce plots of the results and to perform further 

data reduction, which became necessary as a result of error in the TTR mass flow and 

temperature measurements.  Mass flow through the crossflow fan was calculated 

independently of the work produced by the TTR, by separating the exhaust duct area into 

three zones, in each of which the flow was assumed to be uniform.  Each zone was 

roughly centered around one of the three exhaust duct combo probes, with zone 1 

surrounding the top probe, zone 2 around the middle probe, and zone 3 around the bottom 

probe.  Mass flow in each zone was calculated as a function of total pressure and 

temperature measurements from that zone’s probe in accordance with Ref. 12: 

  

itcp
t

t
iii ATgC

RT
P

XXm
i

i

i 2
)929.70(

)1( 1
1

2 −−= γ!   (6) 

 where m is the mass flow through zone i, and are the total pressure and 

temperature measured at the top probe, and A

i! it
P

it
T

i is the area of zone i.  A conversion factor 

of 70.929 lbf/ft2-inHg was applied to maintain unit consistency.  Xi is called the 

dimensionless velocity in zone i and is defined as follows: 
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 as T→0 giving 
ii tcpt TgC2=V .  In this case Vi is unknown, but it can be shown 

that  
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with Pi = PA, the static pressure in the exhaust duct.  Solving this expression for 

Xi gives the remaining term needed to find the mass flow in zone i.   

Mass flow through the three zones was calculated using the following values: 

A1 = A3 = 0.018229155 ft2 

A2 = 0.01041666 ft2 

R = 53.3 lbf-ft/lbm-°R 

Cp=186.72 lbf-ft/lbm-°R 

 

It was then a simple task to calculate the total mass flow through the exhaust duct 

by summing the three zonal mass flows as shown in Eq. 7: 

 

∑
=

=++=
3

1
321

i
itot mmmmm !!!!!     (8) 

 

Mass flow-averaged total pressures and temperatures in the exhaust duct were 

then calculated using 
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 Work used by the crossflow fan was calculated using: 

 

    )( )(, avgCFFintptotCFF TTCm −= !W    (10) 

 

Parameters subsequently derived from these TTR-independent quantities are 

hereafter referred to as “computed” parameters.   

 Exit Mach number was calculated using  
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 Exit static temperature was calculated using 
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 Exit velocity was calculated using 

 

( )exitcexitexit RTgMu γ=    (13) 

 

 Finally, corrected thrust was calculated using 
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 with u0 = 0.
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G. RESULTS AND DISCUSSION 

 

 1. Introduction 

 

 The reduced data available from the HPVEE data acquisition program were 

exported to a Microsoft Excel spreadsheet for post-processing.  Performance data plotted 

included total-to-total pressure ratio versus corrected mass flow (Figure 16, showing an 

"open throttle" operating line), total-to-total pressure ratio versus corrected speed (Figure 

17), corrected mass flow versus corrected speed (Figure 18), corrected power versus 

corrected speed (Figure 19), and efficiency versus corrected speed (Figure 20).  For 

comparison to the VSD study performance information, exit velocities (Figure 21) were 

calculated in English engineering units but were also presented in SI units for later 

comparison with CFD results.  The exit velocities were used to calculate thrust.  These 

values were calculated for the present fan and scaled linearly to predict a 12-inch span 

fan for comparison with published results (Figures 22 and 23). 

 Initially the mass flow rate through the crossflow fan was deduced from equation 

(2); however, the data obtained were not consistent.  In some cases, different mass flow 

rates were calculated at the same fan speed.  An example of this is the 7 Feb Run #1 (Not 

Computed) series shown in Figure 18.  Analysis of reduced and raw data led to the belief 

that either the TTR total  temperature measurements or  the  orifice plate  mass flow 

contained some error. The temperature measurements were the most suspect due to the 

fact that there was only a single combo probe on the outlet side of the TTR.  This 

arrangement did not allow an average temperature at the outlet to be recorded.  Therefore, 

the mass flow rate was calculated as in equations (6) through (8). 

 The result of the additional data reduction was that a “computed” crossflow fan 

mass flow rate and power were obtained without reliance on measurements from the 

TTR.  The total temperature and total pressure at the exit to the crossflow fan were also 

mass flow-averaged, as described in equation (9)  The resulting performance plots 

showed a marked improvement in consistency. 
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 2. Performance Plots 

 

 All performance plots were made using computed values described above, 

corrected for standard conditions as described in the Data Reduction section.  Data from 

all runs were plotted as separate series on the same plot for each type of plot.  Trendlines 

were used to demonstrate the consistent nature of the data 

 Figure 16 is a fan operating line, or crossflow fan pressure ratio versus corrected 

mass flow rate.  Despite the wide range of test dates, the data showed excellent 

consistency and smoothness.  Since an operating line plot from the VSD fan #6 was not 

available, no direct comparison could be made.  A second-order trendline was used. 

 Figure 17 is a plot of total-to-total pressure ratio versus corrected speed.  Again, 

the data showed excellent consistency and smoothness.  The data compared favorably to 

the VSD fan #6 performance information available in Figure 6.  This fan demonstrated a 

pressure ratio of 1.33 at approximately 7,000 RPM, as compared to the VSD fan’s 1.28 

measured at approximately 7,300 RPM.  A second-order trendline was used. 

 Figure 18 is a plot of corrected mass flow rate versus corrected speed.  The data 

showed the same degree of consistency and smoothness found in the plots described 

above.  Mass flow compared favorably with the VSD study, with this fan achieving a 

mass flow rate of 2.5 lbm/s at approximately 7,000 RPM vice the VSD fan’s 2.25 lbm/s 

at 7,300 RPM.  A linear trendline was used. 

 Figure 19 is a plot of corrected mass-averaged computed power versus corrected 

speed.  Data consistency and smoothness was of the same degree as the previous plots.  

Power consumption peaked at approximately 59 HP at approximately 7,000 RPM.  No 

comparison to the VSD fan #6 was made since this information was not presented for a 

1.5-inch span fan in the VSD study.  A third-order trendline was used. 

 Figure 20 is a plot of crossflow fan efficiency versus corrected speed.  The data in 

this plot were not as consistent for a given speed.  Since efficiency was calculated as a 

function of the fan total-to-total pressure and temperature ratios, there was no dependence 

on TTR mass flow or temperature measurements and these can be discounted as factors.  

It is likely that the variance shown was the result of the sensitivity of the efficiency 
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calculation to slight changes in the crossflow fan total-to-total pressure or temperature 

ratios.  A third-order trendline was used. 

 Efficiency did not compare as favorably with the VSD fan #6 information.  Figure 

6 shows a peak efficiency for the VSD fan of 0.7 at 7,300 RPM, while Figure 20 shows a 

peak efficiency of approximately 0.65 at ~4,000 RPM.  A trendline plotted for the 12 

March Run #2, which reached the highest RPM tested, indicated a distinct downward 

trend above 5,000 RPM and showed an efficiency of approximately .625 at ~7,000 RPM.  

The reason for the discrepancy between VSD fan #6 and the test assembly efficiency is 

unknown.  It may be traceable to a difference in the methods used to take pressure and 

temperature measurements.  The manner in which these measurements were taken in the 

VSD study is not specified in Ref. 6.  Use of mass-averaged total-to-total pressure and 

temperature ratios in the expression for efficiency was investigated, but resulted only in 

negligible change to the plot.   

 Figure 21 is a plot of exit velocity versus corrected speed.  Peak exit velocity was 

recorded at 718.2 ft/s (218.9 m/s) at 6,990 corrected RPM This information was not 

available for the VSD fan.  Exit velocity was also reported in meters per second for later 

comparison to figures derived from the numerical simulation.  A linear trendline was 

used. 

 Figure 22 is a plot of corrected thrust per foot of span versus corrected speed.  For 

this plot, corrected thrust was scaled by a factor of eight.  This was done to facilitate 

comparison to the VSD fan, for which this information was available only for the 12-inch 

span fan.  A maximum thrust per foot of span of 447 lbf was achieved at 6,990 corrected 

RPM.  A second-order trendline was used. 

 Figure 23 is a plot of corrected thrust per foot of span versus corrected power per 

foot of span.  Both axes of this plot were scaled by a factor of eight for comparison to the 

VSD fan.  Per foot of span, maximum corrected thrust was recorded at 447 lbf, while 

drawing 473 HP.  A second-order trendline was used. 
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Figure 16. Operating Line 
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Figure 17. Pressure Ratio vs. Corrected Speed
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Figure 18. Corrected Computed Mass Flow vs. Corrected Speed 
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Figure 19. Corrected Computed Power vs. Corrected Speed
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Figure 20. Compression Efficiency vs. Corrected Speed 
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Figure 21. Exit Velocity vs. Co
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Figure 22. Corrected Thrust Per Foot of Span vs. Corrected Speed 
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Figure 23. Corrected Thrust vs. Corrected Computed Power 
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3. Flow Visualization 
 

 Flow visualization results were recorded on digital still and video media.  This 

allowed a qualitative comparison to be made with the flow patterns reported in the VSD 

study as well as current computational fluid dynamics efforts.  All flow visualization 

measurements were performed at a rotational speed of 5,000 RPM.   

 Figure 24 presents the overall flow pattern using three dyes injected in the left, 

center, and right ports of the Plexiglas inner blank.  The image shows the distinct central 

streamlines in the rotor and the circulation in the high-pressure cavity.  To a lesser 

degree, the circulation in and through the low-pressure cavity is also evident.  Figure 25 

depicts close-ups of the high-pressure cavity recirculation pattern (a) and the recirculation 

pattern near the low pressure cavity (b).  

 Figure 26 is an overlay of a typical flow pattern obtained from the VSD study 

onto the image from Figure 24.  The streamline patterns are noticeably similar.  Also, the 

centers of the high-pressure and low-pressure cavity-induced recirculations are in the 

same locations as those in the VSD study.   

 Although not directly related to the flow visualization efforts, the effectiveness of 

the labyrinth seals between the crossflow fan and the Plexiglas viewing window should 

be noted.  No leakage of dye through this seal was evident.  This was not the case in the 

mating surfaces between the Plexiglas inner blank and the viewing window, nor between 

the inner blank and the instrumentation port.  A substantial amount of dye leaked 

between these seals and led to some obscuration of the flow visualization. 
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Figure 24. Flow Visualization Trial (12 March Run #1) 
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(b) 

Figure 25. Closeups of (a)HP Cavity and (b)LP Cavity Circulation Patterns 
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Figure 26. Overlay of Streamline Patterns (After Ref. 6) 
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III. NUMERICAL SIMULATION 

 

A. FLO++ OVERVIEW 

 

 The software used for numerical simulation of the CFTA was FLO++, by Softflo 

of South Africa.  FLO++ is a Windows-based computational fluid dynamics (CFD) 

software package capable of handling a wide range of fluid-flow and heat transfer 

problems.  It combines an easy-to-use graphic user interface (GUI) with a powerful grid 

generator, preprocessor and postprocessor (PFLO), and solver (FLO) in one package.  

Both the solver, pre- and postprocessor executables can be recompiled based on the size 

and complexity of the problem in order to provide minimum memory usage.  The 

postprocessor was used to visualize the solution in steady and unsteady mode in either 

contour (scalar) or velocity vector form. 

 FLO++ is capable of handling incompressible or compressible, laminar or 

turbulent flows.  A high-Reynolds number k-ε model is used to model turbulent flows.  

FLO++ is also capable of handling steady or unsteady solutions.  It uses a modified 

SIMPLE algorithm for solving steady cases, or a time-marching upwind-differencing 

modified PISO algorithm to solve unsteady cases.  Sliding meshes are used to model 

moving or rotating machinery.   

 

B. GRID GENERATION 

 

 Grid generation was performed using MATLAB and FLO++.  A 15-bladed fan 

was initially modeled in order to limit the total number of cells in the grid.  A MATLAB 

script file was used to generate a text file of vertex coordinates corresponding to the 

upper and lower surfaces of a blade section and the inner and outer radii of the fan.  The 

MATLAB script file and vertex coordinate text file are included in Appendix B.  Figure 

27 shows the vertices plotted with MATLAB.   
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Figure 27. MATLAB-Generated Blade and Blade Passage Vertices 

After the creation of the vertex coordinate file, the FLO++ preprocessor PFLO 

was opened and a new script file was created, starting with commands that read the 

vertex coordinates directly from the previously created text file.  Once these vertices had 

been created in PFLO, they were splined together appropriately and copied in the 

spanwise direction to provide a basis for the definition of a block.  Once the block was 

defined, cell dimensions and distributions were assigned on all three directions, and the 

block command was executed, which physically created the cells.  Two thin layers of 

cells on the outside and inside radii of the fan were added to smooth the interface 

between the fan cells and interior and exterior cells. In this manner the grid describing the 

passage between two blades was modeled.  This cell group is depicted in Figure 28. 

 
Figure 28. Blade Passage Grid 
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 The blade passage cell group was then copied with 24-degree increments added 

successively in a cylindrical coordinate system.  The resulting structure represented a 

complete rotor grid.  All cells of the rotor grid were assigned to a single cell group for 

later definition as a sliding set.  Figure 29 shows close-ups of the rotor grid detail. 

 

 
 

 
Figure 29. Crossflow Fan Rotor Grid Detail 
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 Remaining components of the CFTA numerical model were constructed in a 

similar manner, with vertex coordinates chosen directly from the CAD drawings used to 

machine the physical components.  These consisted of the intake, low pressure (LP) 

cavity, exhaust duct and extension, high pressure (HP) cavity, and inner fan mesh.  The 

cells in each cell group were dimensioned and distributed appropriately to provide 

acceptable detail with a minimum of skewness of the individual cells.   

Some components in the CFTA had regions of relatively small radius of 

curvature, which required refined modelling.  However, increasing the number of cells in 

these areas was not necessarily an option since it often had an impact on the shape and 

skewness of the cells in the group.  Fine detail was therefore achieved using “detail 

layers” – thin subgroups of cells in a component cell group covering the areas of small 

radius of curvature.  Figure 30 shows the level of detail achieved through the use of these 

cell layers 

 

 

Detail Layers 

Figure 30. Close-up of HP Cavity and Intake Detail Layers 
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 After many trials and refinements, the grid shown in Figure 31 was adopted.  This 

grid demonstrated a high level of detail and proved error-free in the preprocessing stage.  

The grid contained a thin clearance layer cell group, which allowed the assignment of a 

single boundary between the outer radius of the moving inner fan and the rest of the 

external components.  This helped to simplify the setup for the solution stage.  Figure 32 

shows a close-up of the grid to highlight the interface between the moving and non-

moving surfaces.   A total of 36,130 vertices and 16,630 cells were used. 

 Some adjoining cell groups were not of the same cell dimension or distribution.  

In these cases, the ESFIND command was used to define the manner in which the two 

dissimilar meshes were coupled.  This command invoked the FLO++ arbitrary mesh 

coupling to produce a seamless interface between meshes of differing cell dimension or 

distribution. 
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Figure 31. Complete Test Assembly Computational Grid 



 

Stationary 

Rotating 

Stationary 

Figure 32. Grid Moving Surfaces Detail 

 Once the grid was fully constructed and the mesh coupling completed, boundary 

cells were chosen and defined.  Initially the assembly inlet and outlet were defined as 

PRESSURE type boundaries, with atmospheric pressure specified.  The outer and inner 

surfaces of the fan rotor, inner surface of the fan clearance layer, and the outer surface of 

the inner fan mesh were defined as ATTACHED type boundaries, which facilitated their 

later use as sliding sets.  The front and back faces of the entire assembly model 

(corresponding to the areas covered by the front and back plates of the physical 

assembly) were defined as SYMMETRY type boundary conditions.  This was done to 

minimize demand on the solver by reducing the test assembly to a pseudo-2D problem 

instead of a full 3D problem.  All other boundaries were assigned as WALL type by 
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default.  Figure 33 shows the assigned boundaries, with the exception of the 

SYMMETRY boundaries. 

 Once boundaries were assigned, the sliding sets were defined using the SSDEF 

command with which the boundaries of type ATTACHED were instructed to slide 

against each other.  The fan rotor cell group rotated in the negative θ-direction based on a 

cylindrical coordinate system defined with the z-axis aligned with the axis of rotation of 

the CFTA.  Additionally, material properties such as density, viscosity, and reference 

pressure and temperature were specified.  Density was defined as either constant at 1.205 

kg/m3 for incompressible solutions or as dictated by the ideal gas law for compressible 

solutions.  Viscosity was defined as constant at 1.8×10-5 N-s/m2.  Reference pressure and 

temperature were fixed at 1×105 Pa and 300 K respectively.   

 The presence of moving meshes necessitated an unsteady solution.  This was 

selected using the UNSTEADY command.  Also specified in this command line was 

information regarding the time step, maximum Courant number, and modifiers to the 

PISO (Pressure Implicit Split Operator) algorithm.  The time step could be specified as 

FIXED or ADJUSTABLE.  If ADUSTABLE was chosen the time step would adjust 

during each iteration to maintain the specified maximum Courant number.  Also, a 

minimum number of corrector loops used in the PISO algorithm could be specified.   

 The remainder of the commands in the script file were dedicated to solver 

commands and instructions regarding how to save the results.  The PFLO command 

script file is included as Appendix B. 
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BOUNDARY LEGEND 
 

White  WALL 
Blue  INLET 
Yellow  OUTLET 
Red/Orange ATTACHED 
Blue/Lt Blue ATTACHED 
 
Not Shown SYMMETRY 

Figure 33. Boundary Groups 
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C. FLOW SOLUTION 

 

 Once the PFLO command input file was complete, the solver FLO was initiated.  

Initially, a compressible solution at 5,000 RPM was attempted.  The maximum Courant 

number was set at 1 in order to preserve time-accuracy of the solution.  This was 

considered important in visualizing how the flow developed inside the crossflow fan.  

However, this  had a significant effect on the time step, which was adjusted by FLO each 

iteration in order to remain below the specified maximum time step.  Time steps on the 

order of 10-7 seconds or smaller were frequently encountered, making the solution time 

unreasonably long.  A fan speed of 5,000 RPM corresponded to one rotation in .012 

seconds.  It was considered desirable to obtain a solution of at least one fan revolution to 

ensure proper function of the grid.  With a time step of 10-7 seconds, this would have 

required 120,000 iterations of solver.  Given that each iteration took approximately 20 

seconds to process, the solution time would have been approximately 667 hours, or 27 

days.   

 Additionally problematic was the fact that the solver had a tendency to become 

unstable, even well into the solution time.  This instability manifested itself as unrealistic 

velocities in the intake and / or inflow at the exhaust duct, both of which eventually 

became unbounded.  Therefore, several modifications to the original grid were made in 

the hope of alleviating these problems.   

 The unbounded intake velocity consistently occurred at the corner nearest the 

high-pressure cavity.  It was thought that highly skew cell geometry in close proximity to 

the intake pressure boundary was at fault.  Consequently, the grid was reshaped to 

improve the geometry of the intake grid.  The intake was extended and the boundary was 

reshaped into an arc of 24 inches radius as measured from the center of the fan.  This had 

a favorable effect on the shape and dimension of the cells in the intake.  The wall 

boundaries of the initial grid were extended to intersect the 24-inch arc.  It was felt that 

the wall extensions would have little effect at such a large radius relative to the radius of 

the fan.  The modified grid contained 36,124 vertices, while the number of cells remained 

unchanged.  The modified grid is shown in Figure 34. 
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Figure 34. Modified Grid 

 In an attempt to correct the inflow that occurred at the exhaust duct boundary, a 

slight pressure gradient was applied between the intake and exhaust duct pressure 

boundaries.  The intake boundary remained at 1×105 Pa, while the exit velocity was 

reduced by 5,000 Pa.  It was felt that the slight pressure gradient would create flow in the 

proper direction from the outset of the solution, thus assisting the solver in the early 

stages of the solution.   

 Finally, the solution definition was changed to an incompressible one.  This made 

a reduction in fan speed necessary, since the rotor tip speed of approximately 80 m/s 

made speeds approaching compressibility a possibility elsewhere in the fan.  The fan 

speed was therefore reduced to 3,000 RPM and density was set to "constant". 

 

D. RESULTS AND DISCUSSION 
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 The solver processed for a total of 24,200 iterations at a fan speed of 3,000 RPM.  

This corresponded to a solution time of 2.13×10-2 seconds, or 1.065 revolutions of the 



fan.  After approximately 18,000 iterations, the solver was stopped and the input file was 

modified to eliminate the pressure differential between the intake and exhaust boundaries.  

It was felt that the pressure differential was not necessary after flow had been established 

through the fan.  The solution was restarted from the 16,400th iteration, and exhibited 

some oscillation caused by the instantaneous change in boundary conditions which 

appeared to damp out prior to reaching 20,000 iterations.  The flow resumed its previous 

pattern prior to reaching 24,200 iterations.   

 The results of the 24,200th iteration were examined.  Contour plots of velocity 

magnitude, Mach number, static pressure, and total pressure were created using the post-

processing functions in PFLO.  Vector plots of velocity magnitude were also created.  

These images are shown in Figures 35 through 42. 

 Figure 35 is a contour plot of velocity magnitude.  Examination of the high- and 

low-velocity areas of the plot reveals similar flow patterns to those found in the 

experimental phase of this research, as well as those found by VSD in their pressure 

gradient analysis.  It must be acknowledged that although this problem was solved as an 

incompressible solution, the maximum velocity depicted on this plot is at a level 

sufficient for compressible effects to exist.  However, these areas of high velocity or 

possible compressible flow are extremely small and may be limited to computationally 

insignificant pockets near the surfaces of the fan blades.   

 Figure 36 is a contour plot of Mach number.  This plot demonstrates similar 

results to the previous plot.  From inspection of the Mach number plot, it can be seen that 

the exit Mach number is in the range of .29 to .32.  This is supported by experimental 

data, which suggests an exit Mach number of approximately .27 at 3,000 RPM.  

Frictional effects of the front and back plates of the test assembly may explain the lower 

Mach number in the experimental data. 

 Figure 37 is a contour plot of static pressure.  Inspection of this plot further 

verifies the locations of the high- and low-pressure circulation regions within the 

crossflow fan.  The reason for the choice of names of the two cavities is also clear.  

Although the lowest recorded pressure does not actually occur inside the low-pressure 

cavity, this cavity creates the circulation area in which the lowest pressure is seen.  The 
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high-pressure cavity shows a pressure lower than reference pressure in this image; 

however, the pressure in this cavity is definitely higher than anywhere within the 

circulation region caused by the low-pressure cavity. 

 Figure 38. is a contour plot of total pressure.  It must be acknowledged that the 

total-to-total pressure ratio in this image is less than the experimentally obtained values.  

Figure 17 shows a pressure ratio of approximately 1.055 at a fan speed of 3,000 corrected 

RPM.  Figure 38 shows an approximate pressure ratio of up to 1.017.  The reason for this 

discrepancy may lie with use of specified inlet and exit pressure boundaries.  

Additionally, the numerically derived total pressures may still show effects from the 

restart at the 16,400th iteration.  Although this information was not available due to some 

of the results files being overwritten after the restart, a plot of total pressure derived from 

roughly the 18,000th iteration, prior to the restart of the solver, showed a pressure ratio 

approaching 1.05.   

 Several different velocity magnitude vector plots were examined.  Figure 39 is a 

plot of the entire test assembly.  The large difference in velocity magnitudes and the large 

number of vectors in the plot makes flow patterns somewhat difficult to discern.  

Therefore, separate plots were created showing only certain cell groups of interest.  These 

are given as Figures 40 through 42.  Comparison with experimentally derived flow 

velocities and flow patterns further testifies to the validity of the numerical solution. 
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Figure 35. Contour Plot of Velocity Magnitude 
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Figure 36. Contour Plot of Mach Number



 
Figure 37. Contour Plot of Static Pressure 

 
Figure 38. Contour Plot of Total Pressure
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Figure 39. Vector Plot of Velocity 

 
Figure 40. Vector Plot of Velocity in the Exhaust Duct, Extension, and Detail Layer 
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Figure 41. Vector Plot of Velocity in the Low-Pressure Cavity and Recirculation 

Area 

 
Figure 42. Vector Plot of Velocity in the High-Pressure Cavity and Recirculation 

Region 
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IV. FAN-IN-WING CONCEPT 
 

A. DESCRIPTION 

 

 Analysis of the experimental and numerical simulation results led to the 

conceptualization of a crossflow fan-based lift / propulsion device.  This concept 

consisted of a crossflow fan of the type and configuration studied in the experimental and 

numerical simulation phases of this research, installed within a wing section.  The intake 

of the fan was located in such a manner as to coincide with the location of the low-

pressure peak of the airfoil in forward flight, or with the location of the separation bubble 

at high angles of attack.  This theoretically increased the lift produced by the wing by 

further reducing the pressure in the low-pressure region on the upper surface of the wing 

section.  Additionally, it was theorized that the location of the intake would inhibit flow 

separation at high angles of attack.  The crossflow fan exhaust exited the wing section 

from the trailing edge, providing both thrust and higher lift due to supercirculation 

effects.  Figure 43 shows one possible installation of the “fan-in-wing” concept.  It is 

important to emphasize that this particular installation may not represent an optimum 

configuration. 

 

 
Figure 43. Conceptual Fan-In-Wing Installation 
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B. NUMERICAL SIMULATION 

 

 In order to investigate the usefulness of the fan-in-wing configuration as applied 

to a V/STOL aircraft, a relatively simple numerical simulation was performed using 

FLO++.  A NACA 4244 airfoil was selected for use in this simulation, solely for its 

thickness.  It was felt that a crossflow fan of the same dimensions as that used in the 

experimental phase could easily be incorporated into the 4244 airfoil of appropriate 

chord. 

 The airfoil coordinates were obtained from Ref. 13 and were used to create airfoil 

splines in the PFLO input command file.  A very basic C-grid was created around the 

airfoil, utilizing 5094 vertices and 2400 cells.  More information on this C-grid may be 

found in Appendix C. 

 The intake of the crossflow fan was modeled by defining four of the cells on the 

surface of the wing section as OUTLET boundaries.  FREE mass flow was selected, but 

the mass flow fraction was here defined as the experimentally derived divided by 

the mass flow through the C-grid’s inlet boundary.  This was calculated as 

CFFm!

Ainlet ∞Vρ .   

 The exhaust of the crossflow fan was modeled by defining the terminal cell on the 

upper surface of the wing section as type INLET.  Velocity here was specified using an 

experimentally derived exit velocity oriented in the chordwise direction.  Figure 44 

depicts the boundaries in this problem. 

 This solution was modeled as an incompressible flow, with steady boundary 

conditions.  Convergence was reached extremely quickly, within approximately 30 

seconds.  Contour plots of pressure and velocity magnitude were created for a single 

regime of flight.  Comparisons were made between the unaugmented wing section and 

the fan-in-wing augmented wing section. 

 Flight conditions of 10° angle of attack (AOA) and 100 knots airspeed were 

stipulated in order to simulate level flight.  Mass flow and exit velocity quantities were 

derived from experimental data for a rotational speed of 5,000 RPM.   
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Figure 44 Fan-In-Wing Boundaries 

Figure 45 is a comparison of static pressure between the unaugmented and fan-in-

wing augmented case.  It is obvious from inspection of the figure that there was a 

significant change in the pressure distribution over the upper surface of the wing.  Both 

the low- and high-pressure regions on the upper and lower surface expanded.  This 

resulted in a significant change in the lift developed by the wing. 

Figure 46 is a comparison of velocity magnitude between the unaugmented and 

fan-in-wing augmented case.  In the unaugmented case the wake profile exhibited a 

characteristic shape, and due to the high AOA, flow separation was present.  In the 

augmented case, the wake profile velocities were much higher, indicating a reduction of 

57 



drag.  Additionally, the air expelled from the trailing edge entrained the flow over the 

upper surface of the wing, which in turn reduced the effect of the separation bubble. 

It is important to acknowledge that this was only a simple analysis of the 

possibilities of this type of crossflow fan configuration.  A more detailed analysis is 

required.  However, the results of this numerical simulation demonstrate that significant 

benefits may be obtained by drawing air through the leading edge and expelling it 

through the trailing edge, and that the crossflow fan may be an ideal device to accomplish 

this.  Future efforts in this respect should center around incorporating the crossflow fan 

grid as previously reported into the NACA 4424 airfoil grid in this section.   
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(a) 

 
(b) 

Figure 45 Pressure Contour Plot of the NACA 4424 Airfoil Without (a) and With (b) 
Fan-In-Wing Augmentation 
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(a) 

 
(b) 

Figure 46 Velocity Magnitude Plot of the NACA 4424 Airfoil Without (a) and With 
(b) Fan-In-Wing Augmentation 
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C. SUGGESTED V/STOL CONFIGURATION 

 

 Gossett used a 20.6-inch span fan driven at 6,500 RPM by a 600-HP Wankel 

engine to produce 690 lbf thrust to augment the ducted propellers in his conceptual light 

VTOL aircraft.  The design called for a crossflow fan assembly located along the 

centerline with the axis of the fan parallel to the longitudinal axis of the vehicle.  A 

longer span fan was not considered in Gossett’s design due to weight, engine size, and 

specifically, power limitations.  Gossett extrapolated information for Fan #6 in the VSD 

study to arrive at his power requirements, leading him to conclude that the best thrust-to-

power ratio of 1.15 would be achieved at 6,500 RPM.  However, the VSD study did not 

test this fan below approximately 6,000 RPM.  Inspection of Figures 22 and 23 reveals 

that a thrust to horsepower ratio (per foot of span) of 2 may be obtained by operating the 

fan at approximately 3,250 RPM.   

 In order to develop a useful amount of thrust in a light civil VTOL aircraft design, 

operation at this relatively low RPM called for a much longer span.  For example, a 10-

foot span fan will be required in order to produce 1,200 lbf thrust when powered by the 

600-HP engine described in Ref. 8.  A span this large was not useable in Gossett’s design 

due to fuselage and wing section size limitations.  However, the fan-in-wing concept 

takes advantage of the dimensions of the wing and may allow designers to take advantage 

of the higher thrust-to-power ratio of the lower-RPM fan. 

 A suggested aircraft configuration is given in Figure 47.  This general 

configuration could be adapted and scaled to suit a number of applications.  The basic 

design centers around the use of four fan-in-wing sections, which connect a separate 

fuselage to a twin boom-type tail assembly.  The design is not unlike that of the Rockwell 

OV-10 Bronco observation aircraft.  Two additional lifting surfaces strengthen the 

structure.   

 The fan-in-wing sections, shown in blue in Figure 47, rotate 90° around the 

crossflow fan axis to provide thrust for vertical takeoff.  The lifting surfaces are staggered 

so that thrust from the forward fan-in-wing sections will not impinge on the center 
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structural member or the aft fan-in-wing section.  A high-mounted horizontal stabilizer 

prevents impingement of the net thrust from both fan-in-wing sections.   

 Thrust in the VTOL mode would be provided by the crossflow fans in the fan-in-

wing sections, rotated initially 90° downwards.  Forward flight would be accomplished 

by slowly rotating the fan-in-wing sections upwards toward 0° relative to the longitudinal 

axis of the aircraft.  As forward airspeed builds, lift would be generated by the airfoil 

starting at a high AOA.  Stall characteristics of the wing would be reduced by the 

elimination of the separation bubble due to the crossflow fan intake.   

 Thrust vectoring in a hover could be accomplished by flaps on the upper and 

lower sides of the trailing edge.  These flaps would move in concert with each other to 

provide longitudinal control.  Thrust vectoring flaps could also move in opposition to 

each other, forming a linear “nozzle”.  This would allow throttling of the crossflow fan 

for optimum performance.  Lateral control in a hover could be accomplished by a system 

of vanes located in the exhaust duct.  Yaw control could easily be accomplished by 

allowing left- and right-side fan-in-wing sections to rotate independently.  Other controls 

would be as in current fixed-wing aircraft.   

 Use of two engines would allow the fore and aft fan-in-wing sections to be 

powered separately.  This would provide emergency operation in forward-flight mode in 

case of a single engine failure.  The aircraft could be landed at any suitable airport.  In the 

case of dual engine failure, the aircraft would have the ability to glide as with other fixed-

wing aircraft. 
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Figure 47 Three-View of Suggested V/STOL Aircraft Configuration Utilizing Fan-

In-Wing Concept 
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V. CONCLUSIONS AND RECOMMENDATIONS 
 

A. EXPERIMENTAL APPARATUS 

 

 The Crossflow Fan Test Assembly (CFTA) was constructed and successfully 

operated.  Comparison of results with the Vought Systems Division (VSD) experimental 

data confirmed the validity of the design of the fan used in the present research.  

Repeatability of the results was demonstrated in the course of seven different 

performance runs.  The resulting data were extremely compact and exhibited little 

variance despite the different ambient conditions on the various dates on which data were 

taken.  In addition to validation of the VSD study, data were provided for the 1,000-5,000 

RPM range.  This was critical in that it revealed a higher thrust-to-power ratio than that 

observed in the higher RPM range tested by VSD.  A wide range of raw and reduced data 

were taken for this important speed range.  Flow visualization results also supported the 

conclusions drawn from the experimental data.  Similar streamlines and flow patterns to 

those predicted in the VSD study were noted in the present results.   

 The data acquisition system proved extremely effective and allowed the collection 

of both raw and reduced data in minimum time.  However, further data reduction became 

necessary due to noticeable variations in TTR mass flow for a given speed.  This was 

accomplished with Excel, but could easily be incorporated into the HPVEE  program to 

eliminate post-processing altogether.  Additionally, the HPVEE program should be 

rewritten to remove references to TTR measurements, as these became irrelevant through 

the use of dimensionless velocity and mass-averaging to calculate crossflow fan 

parameters independently.   

 A greater number of combination probes should be used in the crossflow fan inlet.  

This would allow a more accurate average of total temperature and pressure to be 

determined.  Additionally, it would allow the inlet flow parameters to be mass-averaged. 

 The inner plate of the front blanking plate should be instrumented with a 

directional combination probe.  This could be mounted through the instrumentation port 

already incorporated in the plate.  The inner plate should be equipped with an actuator in 
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order to allow rotation of the plate for multiple measurements of pressure within the fan 

during a single run. 

 Seals should be considered for use between the Plexiglas-to-Plexiglas and 

Plexiglas-to-Aluminum interfaces on the viewing window to minimize air flow and dye 

loss through these areas.  Labyrinth seals may perform this function, but may require 

permanent changes to the Plexiglas.  Subsequent changes to the test assembly cavity 

shapes or arrangements would likely require fabrication of a new viewing window and 

blanking plate. 

 Experiments with the CFTA should continue in an effort to determine optimum 

configurations for various lift and propulsion applications.  The most immediate need is 

to develop a throttling device for the crossflow fan exhaust duct.  This will allow a true 

compressor map to be obtained for the crossflow fan, and will help suggest the optimum 

operating conditions for any particular regime of flight.  Subsequently, efforts should 

center around determining optimum fan dimensions, number of blades, solidity, blade 

shape, and blade angle.  Finally, different cavity, intake, and exhaust configurations 

should be tested. 

 

B. NUMERICAL SOLUTION 

 

 A 15-bladed crossflow fan computational grid was created and mated with a grid 

modeled after the cavities, intake, and exhaust used in the CFTA.  An incompressible 

solution was achieved at a fan speed of 3,000 RPM in a reasonable computational time.  

The results were similar to those obtained through experimental and flow visualization 

efforts.   

 An incompressible solution using a 30-bladed fan should be pursued immediately.  

A video card with more memory would be useful in this endeavor, as would the use of 

faster computers which will soon become available.  Following this, a compressible 

solution should be attempted.  This would facilitate an increase in fan speed up to 5,000 

RPM or perhaps greater.  A 3D solution will eventually be called for.  A 3,000 RPM 

incompressible approach to this problem is recommended to spare computational time.   
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 Testing of alternate intake, cavity, or exhaust duct shapes in an incompressible, 

3,000-RPM solution will not require a great deal of effort.  Since the computational grid 

was created in a modular fashion in the PFLO input file, it will not be difficult to make 

changes to the existing cavity shapes or locations without significantly affecting the 

remainder of the grid.  Changes to the blade shape and number will require more effort, 

but could be accomplished in a similar manner. 

 

C. FAN-IN-WING CONCEPT 

 

 Numerical simulation of a theoretical wing section augmented with a crossflow 

fan was performed.  The results suggested a significant increase in lift may be obtained 

using a crossflow fan in a wing section as a lift / propulsion device.  One possible 

configuration that implements this concept was introduced.   

Refinement of the numerical solution should proceed by incorporation of a 

rotating crossflow fan grid inside the existing wing section; fabrication of a scale 

augmented wing section for testing in a low-speed wind tunnel; and construction of a 

flying model.  The numerical simulation could be accomplished in a short period of time 

by modification of the numerical simulation used in Section III.  A wing section for wind 

tunnel testing should be constructed, complete with a rotating crossflow fan.  This would 

allow validation of the fan-in-wing concept as well as optimization of the intake, cavity, 

and exhaust duct configuration.  A small-scale flying model would be more difficult and 

expensive to produce, but it is possible and would be the next logical step in attempting 

to prove the worth of the crossflow fan in a lift / propulsion application. 
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APPENDIX A DATA ACQUISITION PROGRAM 
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Figure A1. HPVEE Data Acquisition Program CFFdata.vee 
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APPENDIX B CROSSFLOW FAN GRID GENERATION CODE 
 

B1. MATLAB BLADE PASSAGE VERTEX GENERATION CODE 
 
%   Program to draw the CFF airfoil profile and calculate the machine coordinates 
%   of a 1/4" ball cutter tool 
% 
clear all 
close all 
% 
%   Camber line first 
% 
% 
thetac=linspace(80,165.22,100); 
%   Center point of camber arc 
xc0=4.4770; 
yc0=1.4294; 
rc0=1.4515; 
% 
xc=xc0-rc0*cos(thetac*pi/180); 
yc=yc0-rc0*sin(thetac*pi/180); 
figure(1) 
plot(xc,yc,'b.') 
% 
%   Now the pressure side 
% 
thetap=linspace(85.65,159.58,100); 
%   Center point of pressure arc 
xp0=4.3454; 
yp0=1.6305; 
rp0=1.6102; 
% 
xp=xp0-rp0*cos(thetap*pi/180); 
yp=yp0-rp0*sin(thetap*pi/180); 
hold on 
plot(xp,yp,'r.') 
% 
%   Then the suction side 
% 
thetas=linspace(74.54,170.48,100); 
%   Center point of suction arc 
xs0=4.5771; 
ys0=1.2730; 
rs0=1.3458; 
% 
xs=xs0-rs0*cos(thetas*pi/180); 
ys=ys0-rs0*sin(thetas*pi/180); 
plot(xs,ys,'g.') 
% 
%   So far so good! Now the leading edge 
% 
thetale=linspace(85.65,180+74.54,20); 
%   Center point of leading edge arc 
xle0=4.225; 
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yle0=0.000; 
rle0=0.025; 
% 
xle=xle0+rle0*cos(thetale*pi/180); 
yle=yle0+rle0*sin(thetale*pi/180); 
plot(xle,yle,'m.') 
% 
%   Not quite there yet so lets try the trailing edge 
% 
thetate=linspace(159.58,-(180-170.68),20); 
%   Center point of leading edge arc 
xte0=5.88037; 
yte0=1.05919; 
rte0=0.025; 
% 
xte=xte0+rte0*cos(thetate*pi/180); 
yte=yte0+rte0*sin(thetate*pi/180); 
plot(xte,yte,'c.') 
% 
%   Concatenate the arrays into one for the complete airfoil 
% 
x=zeros(237,1); 
y=zeros(237,1); 
for i=1:3 
    x(i)=xte(17+i); 
    y(i)=yte(17+i); 
end 
for i=4:103 
    x(i)=xs(104-i); 
    y(i)=ys(104-i); 
end 
for i=104:120 
    x(i)=xle(123-i); 
    y(i)=yle(123-i); 
end 
for i=121:219 
    x(i)=xp(i-120); 
    y(i)=yp(i-120); 
end 
for i=220:237 
    x(i)=xte(i-219); 
    y(i)=yte(i-219); 
end 
%plot(x,y) 
% 
% Plot the dowels on the camber line 
% 
thetai=linspace(0,2*pi); 
plot(4.9161+0.030*cos(thetai),0.0459+0.030*sin(thetai)) 
% 
thetai=linspace(0,2*pi); 
plot(5.5490+0.030*cos(thetai),0.4508+0.030*sin(thetai)) 
% 
 
figure(2) 
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plot(x,y) 
% 
%   Draw the passage between the blades 
% 
fid = fopen('vreadb1.txt','w t'); 
for i = 1:111 
    xpass(i) = x(i); 
    ypass(i) = y(i); 
    Vreadb1(i,:)=[i xpass(i) ypass(i)]; 
    fprintf(fid,'    %5.4f    %5.4f    %5.4f\n',Vreadb1(i,1), Vreadb1(i,2), Vreadb1(i,3)); 
end 
Vreada=[Vreadb1(:,2), Vreadb1(:,3)] 
fclose(fid) 
fid = fopen('vreadb2.txt','w t'); 
for i = 111:237 
    xpass(i+1) =  x(i)*cos(pi*24/180)+y(i)*sin(pi*24/180); 
    ypass(i+1) =- x(i)*sin(pi*24/180)+y(i)*cos(pi*24/180); 
    Vreadb2(i+1,:)=[i+1 xpass(i+1) ypass(i+1)]; 
    fprintf(fid,'    %5.4f    %5.4f    %5.4f\n',Vreadb2(i+1,1), Vreadb2(i+1,2), Vreadb2(i+1,3)); 
end 
for j=111:237 
    Vreadb(j-110,:)=[Vreadb2(j+1,2), Vreadb2(j+1,3)]; 
end 
fclose(fid) 
figure(3) 
plot(xpass,ypass,'r.') 
axis([3 7 -2 2]) 
% 
% Plot the rotor endwall 
% 
thetai=linspace(pi*24/180,0); 
hold on 
plot(4.2*cos(thetai),-4.2*sin(thetai),'b.') 
 
% 
offset = atan(y(1)/x(1)); 
thetai=linspace(pi*24/180,0); 
plot(6*cos(thetai-offset),-6*sin(thetai-offset),'g.') 
% 
 
Vread1=[xpass' ypass']; 
Vreadc=[4.2*cos(thetai)',-4.2*sin(thetai)']; 
Vreadc=flipud(Vreadc) 
Vreadd=[6*cos(thetai-offset)',-6*sin(thetai-offset)']; 
 
Vr=[Vreada;Vreadc;Vreadb;Vreadd]; 
for i=1:length(Vr) 
    Vread(i,:)=[i Vr(i,:)]; 
end 
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B2. GRID GENERATION FLO++ INPUT CODE 
 
reset 
// *** crossflowfan : Flo++ input file  
// *** Insert your Flo++ code here  
reset 
csys 0 
#def span 1.5 
#def spnblk 1 
#def chordblk 30 
#def cbr 1.2 
#def cscblk 20 
#def cscr 1.2 
#def clnc 6.13 
// *** Mesh generation ***************************** 
////Build fan passage splines////////////////////// 
//vread c:\vread15mod.txt 0 ALL 
vread c:\vread15mod.txt 0 ALL 
vp 
vset news vlist 338 339 
vmerge vset 0.0001 
vset news vlist 111 112 
vmerge vset 0.0001 
vset news vlist 211 212 
 
vmax 
 
spline 1 vran vmax - 436 vmax - 325 1 
#def bp1 vmax - 378 
splmodify 1 modify bp1 -bp1 
spline 2 vran vmax - 325 vmax - 225 1 
#def bp2 vmax - 277 
splmodify 2 modify bp2 -bp2 
spline 3 vran vmax - 225 vmax - 99 1 
#def bp3 vmax - 162 
splmodify 3 modify bp3 -bp3 
spline 4 vlist vmax - 99 vmax - 89 vmax - 79 vmax - 69 vmax - 59 vmax - 49 vmax - 39 vmax - 29 vmax - 

19 vmax - 9 vmax - 436 
#def bp4 vmax - 49 
splmodify 4 modify bp4 -bp4 
sp 
 
vset all 
vcopy 2 vmax vset span 0 0 
vp 
 
spline 5 vran vmax - 436 vmax - 325 1 
#def bp5 vmax - 378 
splmodify 5 modify bp5 -bp5 
spline 6 vran vmax - 325 vmax - 225 
#def bp6 vmax - 277 
splmodify 6 modify bp6 -bp6 
spline 7 vran vmax - 225 vmax - 99 1 
#def bp7 vmax - 162 
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splmodify 7 modify bp7 -bp7 
spline 8 vlist vmax - 99 vmax - 89 vmax - 79 vmax - 69 vmax - 59 vmax - 49 vmax - 39 vmax - 29 vmax - 

19 vmax - 9 vmax - 436 
#def bp8 vmax - 49 
splmodify 8 modify bp8 -bp8 
sp 
 
vmax 
 
/////Build fan passage block/////////////////////// 
cgro 1 
block 1 vmax - 873 vmax - 762 vmax - 662 vmax - 536 vmax - 436 vmax - 325 vmax - 225 vmax - 99 
blplot 
blfactors 1 chordblk cscblk spnblk 1 
blcd 1 1 chordblk / 2 cbr chordblk / 2 1 / cbr 
blcd 1 2 chordblk / 2 cbr chordblk / 2 1 / cbr 
blcd 1 3 chordblk / 2 cbr chordblk / 2 1 / cbr 
blcd 1 4 chordblk / 2 cbr chordblk / 2 1 / cbr 
blcd 1 5 cscblk / 2 cscr cscblk / 2 1 / cscr 
blcd 1 6 cscblk / 2 cscr cscblk / 2 1 / cscr 
blcd 1 7 cscblk / 2 cscr cscblk / 2 1 / cscr 
blcd 1 8 cscblk / 2 cscr cscblk / 2 1 / cscr 
 
blex 1 
view 1 0 0 
cp 
 
local 2 cyli 0 0 0 0 90 0 0 
csys 2 
mcrea 4.15 4.2 2 66 78.3752 10 0 span spnblk 1 cscr 1 
mcrea 4.15 4.2 2 78.3752 90 10 0 span spnblk 1 1 / cscr 1 
 
cp 
mcrea 6 6.1 3 76.2039 88.0825 10 0 span spnblk 1.5 cscr 1 
mcrea 6 6.1 3 88.0825 100.2038 10 0 span spnblk 1.5 1 / cscr 1 
cp 
save 12 
 
resu 12 
// Louis 
// Here I have decided to vmerge and compress when finish 
// with cell group 1 
spldelete all 
bldelete all 
cset news cgro 1 
vset news cset 
vset unsel 
vdel vset 
vset all 
cp 
vcdist all 
// VCDIST tell us that we should not merge closer than aprox 0.002181 
vmerge all 0.002 
vcomp all 
vcdist all 
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cp 
 
/////Copy fan passage and build complete fan/////// 
cset news cgro 1 
local 2 cyli 0 0 0 0 90 0 0 
csys 2 
cgro 2 
// Louis: Copy in 1 action 
mcopy 15 vmax 0 24 0 active 
vcdist all 
vmerge all 0.0001 
vcomp all 
vcdist all 
 
cset all 
cgro 0 
cgmodify all 
 
save 13 
 
resu 13 
 
/////Build fan clearance layer///////////////////// 
csys 2 
cgro 2 
mcrea 6.1 clnc 3 0 360 360 0 span spnblk 1 1 1 
 
/////Build Intake/////////////////////////////////////////////////////////////// 
/////Intake First Block///////////////// 
 
 
csys 3 
 
spldelete all 
v vmax + 1 0 4.8676 3.726 
v vmax + 1 0 4.8852 3.7369 
v vmax + 1 0 4.9001 3.7228 
v vmax + 1 0 4.9211 3.7142 
v vmax + 1 0 4.9415 3.7136 
v vmax + 1 0 4.9571 3.7183 
 
csys 2 
 
v vmax + 1 6.1967 125 0 
v vmax + 1 6.1967 120 0  
v vmax + 1 6.1967 115 0 
v vmax + 1 6.1967 110 0 
v vmax + 1 6.1967 105 0 
v vmax + 1 6.1967 100 0 
v vmax + 1 6.1967 95 0 
v vmax + 1 6.1967 90 0 
v vmax + 1 6.1967 85 0 
v vmax + 1 6.1967 80 0 
v vmax + 1 6.1967 75 0 
v vmax + 1 6.1967 70 0 
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v vmax + 1 6.1967 65 0 
v vmax + 1 6.1967 60 0 
v vmax + 1 6.1967 55 0 
v vmax + 1 6.1967 50 0 
v vmax + 1 6.1967 45 0 
v vmax + 1 6.1967 40 0 
v vmax + 1 6.1967 35 0 
v vmax + 1 6.1967 30 0 
v vmax + 1 6.1967 25 0 
 
csys 3 
 
v vmax + 1 0 2.4157 -5.6827 
v vmax + 1 0 2.4057 -5.6731 
v vmax + 1 0 2.3921 -5.6666 
v vmax + 1 0 2.3789 -5.6648 
v vmax + 1 0 2.3645 -5.6673 
v vmax + 1 0 2.3603 -5.6574 
 
csys 2 
 
v vmax + 1 clnc 25 0 
v vmax + 1 clnc 30 0 
v vmax + 1 clnc 35 0 
v vmax + 1 clnc 40 0 
v vmax + 1 clnc 45 0 
v vmax + 1 clnc 50 0 
v vmax + 1 clnc 55 0 
v vmax + 1 clnc 60 0 
v vmax + 1 clnc 65 0 
v vmax + 1 clnc 70 0 
v vmax + 1 clnc 75 0 
v vmax + 1 clnc 80 0 
v vmax + 1 clnc 85 0 
v vmax + 1 clnc 90 0 
v vmax + 1 clnc 95 0 
v vmax + 1 clnc 100 0 
v vmax + 1 clnc 105 0 
v vmax + 1 clnc 110 0 
v vmax + 1 clnc 115 0 
v vmax + 1 clnc 120 0 
v vmax + 1 clnc 125 0 
 
vmax 
vp 
 
spldelete all 
#def bp1 vmax - 52 
spline 1 vlist vmax - 53 -bp1 vmax - 51 vmax - 50 vmax - 49 vmax - 48 
spline 2 vran vmax - 48 vmax - 26 1 
#def bp3 vmax - 22 
spline 3 vlist  vmax - 26 vmax - 25 vmax - 24 vmax - 23 -bp3 vmax - 21 
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spline 4 vlist vmax - 21 vmax - 20 vmax - 19 vmax - 18 vmax - 17 vmax - 16 vmax - 15 vmax - 14 vmax - 
13 vmax - 12 vmax - 11 vmax - 10 vmax - 9 vmax - 8 vmax - 7 vmax - 6 vmax - 5 vmax - 4 vmax 
- 3 vmax - 2 vmax - 1 vmax vmax - 53 



sp 
 
csys 3 
vcopy 2 54 vran vmax - 53 vmax 1 span 0 0  
vp  
 
#def bp5 vmax - 52 
spline 5 vlist vmax - 53 -bp5 vmax - 51 vmax - 50 vmax - 49 vmax - 48 
spline 6 vran vmax - 48 vmax - 26 1 
#def bp7 vmax - 22 
spline 7 vlist  vmax - 26 vmax - 25 vmax - 24 vmax - 23 -bp7 vmax - 21 
spline 8 vlist vmax - 21 vmax - 20 vmax - 19 vmax - 18 vmax - 17 vmax - 16 vmax - 15 vmax - 14 vmax - 

13 vmax - 12 vmax - 11 vmax - 10 vmax - 9 vmax - 8 vmax - 7 vmax - 6 vmax - 5 vmax - 4 vmax 
- 3 vmax - 2 vmax - 1 vmax vmax - 53 

sp 
vmax 
 
bldelete all 
block 9 vmax - 48 vmax - 26 vmax - 21 vmax - 53 vmax - 102 vmax - 80 vmax - 75 vmax - 107 
blfactors 9 50 5 spnblk 3 
 
blex 9 
 
 
/////Intake Second Block////////////////////////////// 
vset none 
 
csys 3 
v vmax + 1 0 4.9571 3.7183 
v vmax + 1 0 5.0204 3.7809 
v vmax + 1 0 5.0811 3.8448 
v vmax + 1 0 5.1426 3.9136 
v vmax + 1 0 5.2094 3.9943 
v vmax + 1 0 5.4164 4.2939 
v vmax + 1 0 5.6144 4.6854 
v vmax + 1 0 5.7769 5.1999 
v vmax + 1 0 5.8362 5.7068 
v vmax + 1 0 5.7902 6.2869 
v vmax + 1 0 5.6351 6.9151 
v vmax + 1 0 5.2369 7.9234 
v vmax + 1 0 3.35 11.56 
v vmax + 1 0 -3.007 23.8109//// 
//v vmax + 1 0 9.16 6.56 //Adjusted point from z=11.56 
//v vmax + 1 0 11.16 2 //Added to adjust grid 
//v vmax + 1 0 11.16 -6.56 //Added for smoothness 
csys 2 
v vmax + 1 24 180 0 
v vmax + 1 24 170 0 
v vmax + 1 24 160 0 
v vmax + 1 24 150 0 
v vmax + 1 24 140 0 
v vmax + 1 24 130 0 
v vmax + 1 24 120 0 
v vmax + 1 24 110 0 
v vmax + 1 24 100 0 
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v vmax + 1 24 90 0 
v vmax + 1 24 80 0 
v vmax + 1 24 70 0 
v vmax + 1 24 60 0 
//v vmax + 1 24 160 0//// 
csys 3 
v vmax + 1 0 19.3968 -14.1337//// 
v vmax + 1 0 9.16 -11.05 
v vmax + 1 0 7.07 -10.42 
v vmax + 1 0 4.26 -8.21 
v vmax + 1 0 2.78 -6.41 
v vmax + 1 0 2.53 -6.00 //added for continuity 
v vmax + 1 0 2.4157 -5.6827 
 
csys 2 
 
v vmax + 1 6.1967 125 0 
v vmax + 1 6.1967 120 0  
v vmax + 1 6.1967 115 0 
v vmax + 1 6.1967 110 0 
v vmax + 1 6.1967 105 0 
v vmax + 1 6.1967 100 0 
v vmax + 1 6.1967 95 0 
v vmax + 1 6.1967 90 0 
v vmax + 1 6.1967 85 0 
v vmax + 1 6.1967 80 0 
v vmax + 1 6.1967 75 0 
v vmax + 1 6.1967 70 0 
v vmax + 1 6.1967 65 0 
v vmax + 1 6.1967 60 0 
v vmax + 1 6.1967 55 0 
v vmax + 1 6.1967 50 0 
v vmax + 1 6.1967 45 0 
v vmax + 1 6.1967 40 0 
v vmax + 1 6.1967 35 0 
v vmax + 1 6.1967 30 0 
v vmax + 1 6.1967 25 0 
vp 
vmax 
 
 
 
spldelete all 
spline 1 vran vmax - 54 vmax - 41 1 
spline 2 vran vmax - 41 vmax - 27 1 
spline 3 vran vmax - 27 vmax - 21 1 
spline 4 vlist vmax - 21 vmax vmax - 1 vmax - 2 vmax - 3 vmax - 4 vmax - 5 vmax - 6 vmax - 7 vmax - 8 

vmax - 9 vmax - 10 
spline 4 vlist vmax - 11 vmax - 12 vmax - 13 vmax - 14 vmax - 15 vmax - 16 vmax - 17 vmax - 18 vmax - 

19 vmax - 20 vmax - 54 
sp 
csys 3 
vcopy 2 55 vran vmax - 54 vmax 1 span 0 0  
vp  
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spline 5 vran vmax - 54 vmax - 41 1 
spline 6 vran vmax - 41 vmax - 27 1 
spline 7 vran vmax - 27 vmax - 21 1 
spline 8 vlist vmax - 21 vmax vmax - 1 vmax - 2 vmax - 3 vmax - 4 vmax - 5 vmax - 6 vmax - 7 vmax - 8 

vmax - 9 vmax - 10 
spline 8 vlist vmax - 11 vmax - 12 vmax - 13 vmax - 14 vmax - 15 vmax - 16 vmax - 17 vmax - 18 vmax - 

19 vmax - 20 vmax - 54 
sp 
vmax 
bldelete all 
block 10 vmax - 54 vmax - 41 vmax - 27 vmax - 21 vmax - 109 vmax - 96 vmax - 82 vmax - 76 
blfactors 10 20 50 spnblk 4 
blcd 10 1 20 1.1 
blcd 10 4 20 1.1 
blcd 10 2 20 1 / 1.1 
blcd 10 3 20 1 / 1.1 
blex 10  
 
cset news cgro 4 
cp 
cset cgro 3 
 
#def cm1 12310 
/////Build inner fan mesh////////////////////////// 
#def vm1 vmax 
cgro 1 
csys 2 
v vmax + 1 3 135 0 
v vmax + 1 4.15 135 0 
v vmax + 1 4.15 125 0 
v vmax + 1 4.15 115 0 
v vmax + 1 4.15 105 0 
v vmax + 1 4.15 95 0 
v vmax + 1 4.15 85 0 
v vmax + 1 4.15 75 0 
v vmax + 1 4.15 65 0 
v vmax + 1 4.15 55 0 
v vmax + 1 4.15 45 0 
v vmax + 1 3 45 0 
vp 
spline 9 vlist vmax - 11 vmax - 10 
spline 10 vran vmax - 10 vmax - 1 1 
spline 11 vlist vmax - 1 vmax 
spline 12 vlist vmax vmax - 11 
sp 
vset none 
vset news vran vmax - 11 vmax 1 
vcopy 2 12 vset 0 0 span 
vp 
 
spline 13 vlist vmax - 11 vmax - 10 
spline 14 vran vmax - 10 vmax - 1 1 
spline 15 vlist vmax - 1 vmax 
spline 16 vlist vmax vmax - 11 
sp 
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block 2 vmax - 23 vmax - 22 vmax - 10 vmax - 11 vmax - 12 vmax - 13 vmax - 1 vmax 
blplot 
blfactors 2 10 spnblk 30 1 
blcd 2 1 10 1 / 1.4 
blcd 2 2 10 1 / 1.4 
blcd 2 3 10 1.4 
blcd 2 4 10 1.4 
 
blex 2 
 
cset cgro 1 
 
view 1 0 0 
 
vset news cset 
vp 
cset news cgro 1 
 
 
#def vm2 vmax - vm1 
 
mcopy 4 vm2 0 90 0 active 
cset news cgro 1 
cp 
 
/////Build inner fan mesh center block///////////// 
vmax 
csys 0 
cgro 1 
mcrea 0 span spnblk -2.12132 2.12132 30 -2.12132 2.12132 30 1 1 1 
cset cgro 1 
cp 
 
 
vset news cset 
vp 
vmerge vset  
csys 0 
/////Build LP cavity/////////////////////////// 
/////LP First Block//////////////// 
vset none 
vset news 
csys 3 
v vmax + 1 0 2.3603 -5.6574 
v vmax + 1 0 2.3645 -5.6673 
v vmax + 1 0 2.3516 -5.6744 
v vmax + 1 0 2.3407 -5.6866 
v vmax + 1 0 2.3344 -5.7035 
v vmax + 1 0 2.3351 -5.7205 
vp 
csys 2 
v vmax + 1 6.1787 20 0 
v vmax + 1 6.1787 15 0 
v vmax + 1 6.1787 10 0 
v vmax + 1 6.1787 5 0 
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v vmax + 1 6.1787 0 0 
v vmax + 1 6.1787 -5 0 
v vmax + 1 6.1787 -10 0 
v vmax + 1 6.1787 -15 0 
v vmax + 1 6.1787 -20 0 
v vmax + 1 6.1787 -25 0 
v vmax + 1 6.1787 -30 0 
v vmax + 1 6.1787 -35 0 
v vmax + 1 6.1787 -40 0 
v vmax + 1 6.1787 -45 0 
v vmax + 1 6.1787 -50 0 
vp 
csys 3 
v vmax + 1 0 -4.8676 -3.8054 
v vmax + 1 0 -4.8818 -3.7668 
v vmax + 1 0 -4.8459 -3.7542 
vp 
csys 2 
v vmax + 1 clnc -50 0 
v vmax + 1 clnc -45 0 
v vmax + 1 clnc -40 0 
v vmax + 1 clnc -35 0 
v vmax + 1 clnc -30 0 
v vmax + 1 clnc -25 0 
v vmax + 1 clnc -20 0 
v vmax + 1 clnc -15 0 
v vmax + 1 clnc -10 0 
v vmax + 1 clnc -5 0 
v vmax + 1 clnc 0 0 
v vmax + 1 clnc 5 0 
v vmax + 1 clnc 10 0 
v vmax + 1 clnc 15 0 
v vmax + 1 clnc 20 0 
vp 
 
vmax 
spldelete all 
#def bp1 vmax - 37 
spline 1 vlist vmax - 38 -bp1 vmax - 36 vmax - 35 vmax - 34 vmax - 33 
spline 2 vran vmax - 33 vmax - 17 1 
#def bp3 vmax - 16 
spline 3 vlist vmax - 17 -bp3 vmax - 15 
spline 4 vlist vmax - 15 vmax - 14 vmax - 13 vmax - 12 vmax - 11 vmax - 10 vmax - 9 vmax - 8 vmax - 7 

vmax - 6 vmax - 5 vmax - 4 vmax - 3 vmax - 2 vmax - 1 vmax vmax - 38 
sp 
 
vcopy 2 39 vset 0 0 span 
vp 
#def bp5 vmax - 37 
spline 5 vlist vmax - 38 -bp5 vmax - 36 vmax - 35 vmax - 34 vmax - 33 
spline 6 vran vmax - 33 vmax - 17 1 
#def bp7 vmax - 16 
spline 7 vlist vmax - 17 -bp7 vmax - 15 
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spline 8 vlist vmax - 15 vmax - 14 vmax - 13 vmax - 12 vmax - 11 vmax - 10 vmax - 9 vmax - 8 vmax - 7 
vmax - 6 vmax - 5 vmax - 4 vmax - 3 vmax - 2 vmax - 1 vmax vmax - 38 



sp 
 
vmax 
bldelete all 
block 11 vmax - 38 vmax - 33 vmax - 17 vmax - 15 vmax - 77 vmax - 72 vmax - 56 vmax - 54  
blplot 
blfactors 11 5 30 spnblk 5 
blex 11 
 
/////LP Second Block///////////////////// 
 
vset news none 
 
csys 3 
v vmax + 1 0 2.3351 -5.7205 
v vmax + 1 0 2.3576 -5.8582 
v vmax + 1 0 2.3791 -6.0989 
v vmax + 1 0 2.3753 -6.3741 
v vmax + 1 0 2.3418 -6.649 
v vmax + 1 0 2.2034 -7.0359 
v vmax + 1 0 1.8774 -7.4162 
v vmax + 1 0 1.4134 -7.7727 
v vmax + 1 0 .4909 -7.9588 
v vmax + 1 0 -.2726 -7.9034 
v vmax + 1 0 -1.2811 -7.5651 
v vmax + 1 0 -2.0786 -7.1576 
v vmax + 1 0 -2.8812 -6.5783 
v vmax + 1 0 -3.5716 -5.8094 
v vmax + 1 0 -4.21 -4.9431 
v vmax + 1 0 -4.6805 -4.188 
v vmax + 1 0 -4.8676 -3.8054 
v vmax + 1 0 -4.8676 -3.8054 
 
csys 2 
 
v vmax + 1 6.1787 20 0 
v vmax + 1 6.1787 15 0 
v vmax + 1 6.1787 10 0 
v vmax + 1 6.1787 5 0 
v vmax + 1 6.1787 0 0 
v vmax + 1 6.1787 -5 0 
v vmax + 1 6.1787 -10 0 
v vmax + 1 6.1787 -15 0 
v vmax + 1 6.1787 -20 0 
v vmax + 1 6.1787 -25 0 
v vmax + 1 6.1787 -30 0 
v vmax + 1 6.1787 -35 0 
v vmax + 1 6.1787 -40 0 
v vmax + 1 6.1787 -45 0 
v vmax + 1 6.1787 -50 0 
 
csys 3 
v vmax + 1 0 2.3351 -5.7205 
vmax 
vp 
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spldelete all 
spline 1 vran vmax - 33 vmax - 17 1 
spline 2 vlist vmax - 16 vmax - 1 vmax - 2 vmax - 3 vmax - 4 vmax - 5 vmax - 6 vmax - 7 vmax - 8 vmax - 

9 vmax - 10 vmax - 11 vmax - 12 vmax - 13 vmax - 14 vmax - 15 vmax 
sp 
 
csys 2 
 
vcopy 2 34 vset 0 0 span 
vp 
vmax 
spline 3 vran vmax - 33 vmax - 17 1 
spline 4 vlist vmax - 16 vmax - 1 vmax - 2 vmax - 3 vmax - 4 vmax - 5 vmax - 6 vmax - 7 vmax - 8 vmax - 

9 vmax - 10 vmax - 11 vmax - 12 vmax - 13 vmax - 14 vmax - 15 vmax 
sp 
 
bldelete all 
block 12 vmax - 33 vmax - 17 vmax - 16 vmax vmax - 67 vmax - 51 vmax - 50 vmax - 34 
blfactors 12 30 10 spnblk 6 
blcd 12 1 30 1 / 1.01  
blcd 12 4 30 1 / 1.01 
blex 12 
cset news cgro 6 
cp 
/////Build Exhaust Wall///////////////////////////////////////////////////////// 
/////First Block/////////////////// 
save 22 
 
resu 22 
vset none 
 
cset news 
cgro 4 
vset none 
#def vmo vmax 
 
csys 3 
v vmax + 1 0 -4.8459 -3.7542 
v vmax + 1 0 -4.8818 -3.7668 
v vmax + 1 0 -4.8863 -3.7626 
v vmax + 1 0 -4.9088 -3.7547 
v vmax + 1 0 -4.9347 -3.7653 
v vmax + 1 0 -4.9454 -3.7909 
vp 
csys 2 
v vmax + 1 6.2312 305 0 
v vmax + 1 6.2312 300 0 
v vmax + 1 6.2312 295 0 
v vmax + 1 6.2312 290 0 
v vmax + 1 6.2312 285 0 
v vmax + 1 6.2312 280 0 
v vmax + 1 6.2312 275 0 
v vmax + 1 6.2312 270 0 
v vmax + 1 6.2312 265 0 
v vmax + 1 6.2312 260 0 
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v vmax + 1 6.2312 255 0 
v vmax + 1 6.2312 250 0 
v vmax + 1 6.2312 245 0 
v vmax + 1 6.2312 240 0 
v vmax + 1 6.2312 235 0 
v vmax + 1 6.2312 230 0 
v vmax + 1 6.2312 225 0 
v vmax + 1 6.2312 220 0 
v vmax + 1 6.2312 215 0 
v vmax + 1 6.2312 210 0 
v vmax + 1 6.2312 205 0 
v vmax + 1 6.2312 200 0 
v vmax + 1 6.2312 195 0 
v vmax + 1 6.2312 190 0 
 
csys 3 
v vmax + 1 0 -1.0097 6.1489 
v vmax + 1 0 0.0089 6.1376 
v vmax + 1 0 0.0089 6.13 
 
csys 2 
v vmax + 1 6.13 305 0 
v vmax + 1 6.13 300 0 
v vmax + 1 6.13 295 0 
v vmax + 1 6.13 290 0 
v vmax + 1 6.13 285 0 
v vmax + 1 6.13 280 0 
v vmax + 1 6.13 275 0 
v vmax + 1 6.13 270 0 
v vmax + 1 6.13 265 0 
v vmax + 1 6.13 260 0 
v vmax + 1 6.13 255 0 
v vmax + 1 6.13 250 0 
v vmax + 1 6.13 245 0 
v vmax + 1 6.13 240 0 
v vmax + 1 6.13 235 0 
v vmax + 1 6.13 230 0 
v vmax + 1 6.13 225 0 
v vmax + 1 6.13 220 0 
v vmax + 1 6.13 215 0 
v vmax + 1 6.13 210 0 
v vmax + 1 6.13 205 0 
v vmax + 1 6.13 200 0 
v vmax + 1 6.13 195 0 
v vmax + 1 6.13 190 0 
// Louis added these in order to  
// get a better interface between groups 2 and 7 
v vmax + 1 6.13 187 0 
v vmax + 1 6.13 185 0 
v vmax + 1 6.13 183 0 
v vmax + 1 6.13 181.5 0 
#def dvm vmax - vmo 
save 18 
 
resu 18 
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vp 
 
spldelete all 
#def bp1 vmax - 59 
spline 1 vlist vmax - 60 -bp1 vmax - 58 vmax - 57 vmax - 56 vmax - 55 
#def bp2 vmax - 30 
spline 2 vran vmax - 55 vmax - 29 
splm 2 modi vmax - 30 vmax - 30 * -1 
spline 3 vlist vmax - 29 vmax - 28 
save 19 
 
resu 19 
sp 
// Louis: I ran out of line lenght 
// Only 256 characters allowed in one line 
// so I added the vertices like below 
spline 4 vlist vmax - 28 vmax * -1 vmax - 1 vmax - 2 vmax - 3 vmax - 4 vmax - 5 vmax - 6 vmax - 7 vmax 

- 8  
spline 4 vlist vmax - 9 vmax - 10 vmax - 11 vmax - 12 vmax - 13 vmax - 14 vmax - 15 vmax - 16 vmax - 

17  
spline 4 vlist vmax - 18 vmax - 19 vmax - 20 vmax - 21 vmax - 22 vmax - 23 vmax - 24 vmax - 25 vmax - 

26 vmax - 27 vmax - 60 
sp 
 
vcopy 2 dvm vset 0 0 span 
 
#def bp5 vmax - 59 
spline 5 vlist vmax - 60 -bp5 vmax - 58 vmax - 57 vmax - 56 vmax - 55 
#def bp6 vmax - 30 
spline 6 vlist vmax - 55 vmax - 54 vmax - 53 vmax - 52 vmax - 51 vmax - 50 vmax - 49 vmax - 48 vmax - 

47  
spline 6 vlist vmax - 46 vmax - 45 vmax - 44 vmax - 43 vmax - 42 vmax - 41 vmax - 40 vmax - 39 vmax - 

38 vmax - 37 vmax - 36 vmax - 35 vmax - 34 vmax - 33 vmax - 32 vmax - 31 -bp6 vmax - 29 
spline 7 vlist vmax - 29 vmax - 28 
spline 8 vlist vmax - 28 vmax * -1 vmax - 1 vmax - 2 vmax - 3 vmax - 4 vmax - 5 vmax - 6 vmax - 7 vmax 

- 8  
spline 8 vlist vmax - 9 vmax - 10 vmax - 11 vmax - 12 vmax - 13 vmax - 14 vmax - 15 vmax - 16 vmax - 

17 vmax - 18 vmax - 19 vmax - 20 vmax - 21 vmax - 22 vmax - 23 vmax - 24 vmax - 25 vmax - 26 
vmax - 27 vmax - 60 

sp 
 
bldelete all 
block 13 vmax - 29 vmax - 28 vmax - 60 vmax - 55 vmax - 90 vmax - 89 vmax - 121 vmax - 116 
 
blfactors 13 5 70 spnblk 7 
blex 13 
cset news cglist 7 2 
VIEW      1.0000e+000     0.0000e+000     0.0000e+000 
VUP       0.0000e+000     1.0000e+000     0.0000e+000 
FOCAL  COORD     2.5000e-001    -6.5494e-001     6.0758e+000 
SCALE  VALUE     4.0470e-001 
cp 
save 23 
 
resu 23 
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autosc on 
focal center 
/////Exhaust Duct Second Block//////////////// 
vset none 
csys 3 
v vmax + 1 0 -4.9454 -3.7909 
v vmax + 1 0 -7.2027 -3.7909//bp? 
v vmax + 1 0 -9.46 -3.7909 
vp 
csys 0 
local 4 cyli 0 -0.57 -2.72 0 90 0 0 0 
csys 4 
v vmax + 1 8.89 -90 0 
v vmax + 1 8.89 -95 0 
v vmax + 1 8.89 -100 0 
v vmax + 1 8.89 -105 0 
v vmax + 1 8.89 -110 0 
v vmax + 1 8.89 -115 0 
v vmax + 1 8.89 -120 0 
v vmax + 1 8.89 -125 0 
v vmax + 1 8.89 -130 0 
v vmax + 1 8.89 -135 0 
v vmax + 1 8.89 -140 0 
v vmax + 1 8.89 -145 0 
v vmax + 1 8.89 -150 0 
v vmax + 1 8.89 -155 0 
v vmax + 1 8.89 -160 0 
v vmax + 1 8.89 -165 0 
v vmax + 1 8.89 -170 0 
 
csys 3 
v vmax + 1 0 -1.0097 6.1489 
v vmax + 1 0 -1.0097 6.1489 
 
vp 
 
csys 2 
v vmax + 1 6.2312 305 0 
v vmax + 1 6.2312 300 0 
v vmax + 1 6.2312 295 0 
v vmax + 1 6.2312 290 0 
v vmax + 1 6.2312 285 0 
v vmax + 1 6.2312 280 0 
v vmax + 1 6.2312 275 0 
v vmax + 1 6.2312 270 0 
v vmax + 1 6.2312 265 0 
v vmax + 1 6.2312 260 0 
v vmax + 1 6.2312 255 0 
v vmax + 1 6.2312 250 0 
v vmax + 1 6.2312 245 0 
v vmax + 1 6.2312 240 0 
v vmax + 1 6.2312 235 0 
v vmax + 1 6.2312 230 0 
v vmax + 1 6.2312 225 0 
v vmax + 1 6.2312 220 0 
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v vmax + 1 6.2312 215 0 
v vmax + 1 6.2312 210 0 
v vmax + 1 6.2312 205 0 
v vmax + 1 6.2312 200 0 
v vmax + 1 6.2312 195 0 
v vmax + 1 6.2312 190 0 
 
vp 
vmax 
 
spldelete all 
spline 1 vran vmax - 45 vmax - 43 1 
spline 2 vran vmax - 43 vmax - 25 1 
spline 3 vlist vmax - 24 vmax vmax - 1 vmax - 2 vmax - 3 vmax - 4 vmax - 5 vmax - 6 vmax - 7 vmax - 8  
spline 3 vlist vmax - 9 vmax - 10 vmax - 11 vmax - 12 vmax - 13 vmax - 14 vmax - 15 vmax - 16 vmax - 

17 vmax - 18 vmax - 19 vmax - 20 vmax - 21 vmax - 22 vmax - 23 vmax - 45 
sp 
vmax  
 
save 44 
 
resu 44 
vcopy 2 46 vset 0 0 span 
vp 
vmax 
 
spline 4 vran vmax - 45 vmax - 43 1 
spline 5 vran vmax - 43 vmax - 25 1 
spline 6 vlist vmax - 24 vmax vmax - 1 vmax - 2 vmax - 3 vmax - 4 vmax - 5 vmax - 6 vmax - 7 vmax - 8  
spline 6 vlist vmax - 9 vmax - 10 vmax - 11 vmax - 12 vmax - 13 vmax - 14 vmax - 15 vmax - 16 vmax - 

17 vmax - 18 vmax - 19 vmax - 20 vmax - 21 vmax - 22 vmax - 23 vmax - 45 
sp 
 
bldelete all 
block 14 vmax - 25 vmax - 24 vmax - 45 vmax - 43 vmax - 71 vmax - 70 vmax - 91 vmax - 89 
 
blfactors 14 10 30 spnblk 8 
blcd 14 5 30 1 / 1.01025 
blcd 14 6 30 1 / 1.01025 
blcd 14 7 30 1 
blcd 14 8 30 1 
blex 14  
 
cset news cgro 8 
cp 
 
vmax 
 
 
/////Build Exhaust Wall Extension////////////////////////////////////////////////// 
 
csys 3 
vset none 
v vmax + 1 0 -4.9454 -3.7909 
v vmax + 1 0 -7.2027 -3.7909//bp? 
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v vmax + 1 0 -9.46 -3.7909 
v vmax + 1 0 -4.9454 -8.825 
v vmax + 1 0 -7.2027 -8.825 
v vmax + 1 0 -9.46 -8.825 
vp 
 
spldelete all 
#def bp1 vmax - 4 
spline 1 vlist vmax - 3 -bp1 vmax - 5 
spline 2 vlist vmax - 5 vmax - 2 
#def bp3 vmax - 1 
spline 3 vlist vmax - 2 -bp3 vmax 
spline 4 vlist vmax vmax - 3 
sp 
 
vcopy 2 6 vset span 0 0 
vp 
#def bp5 vmax - 4 
spline 5 vlist vmax - 3 -bp5 vmax - 5 
spline 6 vlist vmax - 5 vmax - 2 
#def bp7 vmax - 1 
spline 7 vlist vmax - 2 -bp7 vmax 
spline 8 vlist vmax vmax - 3 
sp 
 
vmax 
 
bldelete all 
block 6 vmax - 3 vmax - 5 vmax - 2 vmax vmax - 9 vmax - 11 vmax - 8 vmax - 6 
blfactors 6 10 10 spnblk 9 
blex 6 
 
 
/////Build HP Cavity/////////////////////////////////////////////////////// 
/////HPC First Block/////////////// 
csys 0 
csys 3 
vset none 
vset news 
 
v vmax + 1 0 4.8676 3.726 
v vmax + 1 0 4.8852 3.7369 
v vmax + 1 0 4.8757 3.7578 
v vmax + 1 0 4.8741 3.7775 
v vmax + 1 0 4.8790 3.7954 
v vmax + 1 0 4.8871 3.8086 
v vmax + 1 0 4.9406 3.8754 
 
csys 2 
 
v vmax + 1 6.2792 175 0 
v vmax + 1 6.2792 170 0 
v vmax + 1 6.2792 165 0 
v vmax + 1 6.2792 160 0 
v vmax + 1 6.2792 155 0 
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v vmax + 1 6.2792 150 0//breakpoint 
v vmax + 1 6.2792 145 0 
v vmax + 1 6.2792 140 0 
v vmax + 1 6.2792 135 0 
v vmax + 1 6.2792 130 0 
 
csys 3 
 
v vmax + 1 0 -.0605 6.2789 
v vmax + 1 0 .0075 6.2675 
v vmax + 1 0 .0329 6.262 
v vmax + 1 0 .053 6.249 
v vmax + 1 0 .0655 6.2324 
v vmax + 1 0 .0729 6.2016 
v vmax + 1 0 .0676 6.1767 
v vmax + 1 0 .0516 6.1543 
v vmax + 1 0 .0324 6.1423 
v vmax + 1 0 .0089 6.1376 
v vmax + 1 0 .0089 6.13 
 
csys 2 
 
v vmax + 1 clnc 175 0 
v vmax + 1 clnc 170 0 
v vmax + 1 clnc 165 0 
v vmax + 1 clnc 160 0 
v vmax + 1 clnc 155 0 
v vmax + 1 clnc 150 0//breakpoint 
v vmax + 1 clnc 145 0 
v vmax + 1 clnc 140 0 
v vmax + 1 clnc 135 0 
v vmax + 1 clnc 130 0 
v vmax + 1 clnc 127.5 0 
vp 
 
vmax 
spldelete all 
#def bp1 vmax - 37 
spline 1 vlist vmax - 38 -bp1 vmax - 36 vmax - 35 vmax - 34 vmax - 33 vmax - 32 
spline 2 vlist vmax - 32 vmax - 22 vmax - 23 vmax - 24 vmax - 25 vmax - 26 vmax - 27 vmax - 28 vmax - 

29 vmax - 30 vmax - 31 vmax - 21 
#def bp3 vmax - 12 
spline 3 vlist vmax - 21 vmax - 20 vmax - 19 vmax - 18 vmax - 17 vmax - 16 vmax - 15 vmax - 14 vmax - 

13 -bp3 vmax - 11 
spline 4 vlist vmax - 11 vmax - 10 vmax - 9 vmax - 8 vmax - 7 vmax - 6 vmax - 5 vmax - 4 vmax - 3 vmax 

- 2 vmax - 1 vmax vmax - 38 
sp 
 
csys 3 
vcopy 2 39 vset span 0 0 
vp 
 
#def bp5 vmax - 37 
spline 5 vlist vmax - 38 -bp5 vmax - 36 vmax - 35 vmax - 34 vmax - 33 vmax - 32 
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spline 6 vlist vmax - 32 vmax - 22 vmax - 23 vmax - 24 vmax - 25 vmax - 26 vmax - 27 vmax - 28 vmax - 
29 vmax - 30 vmax - 31 vmax - 21 

#def bp7 vmax - 12 
spline 7 vlist vmax - 21 vmax - 20 vmax - 19 vmax - 18 vmax - 17 vmax - 16 vmax - 15 vmax - 14 vmax - 

13 -bp7 vmax - 11 
spline 8 vlist vmax - 11 vmax - 10 vmax - 9 vmax - 8 vmax - 7 vmax - 6 vmax - 5 vmax - 4 vmax - 3 vmax 

- 2 vmax - 1 vmax vmax - 38 
sp 
 
vmax 
 
bldelete all 
block 7 vmax - 21 vmax - 32 vmax - 38 vmax - 11 vmax - 60 vmax - 71 vmax - 77 vmax - 50 
blfactors 7 20 10 spnblk 10 
blex 7 
cset news cgro 10 
cp 
 
/////HPC Second Block//////////////////////////////////// 
vset none 
csys 3 
 
v vmax + 1 0 4.9406 3.8754 
v vmax + 1 0 5.29 4.5 
v vmax + 1 0 5.59 5.68 
v vmax + 1 0 5.29 6.99 
v vmax + 1 0 5.05 7.4156 
v vmax + 1 0 4.2003 8.3185 
v vmax + 1 0 3.3509 8.9136//breakpoint ????? 
v vmax + 1 0 2.9006 9.1322 
v vmax + 1 0 2.502 9.2577 
v vmax + 1 0 1.77 9.35 
v vmax + 1 0 .8759 9.221 
v vmax + 1 0 0 8.84 
v vmax + 1 0 -.58 8.16 
v vmax + 1 0 -.79 7.39 
v vmax + 1 0 -.6908 7.0132 
v vmax + 1 0 -.5907 6.7994 
v vmax + 1 0 -.3601 6.4987 
v vmax + 1 0 -.2105 6.3704 
v vmax + 1 0 -.0605 6.2789 
v vmax + 1 0 -.0605 6.2789 
vp 
 
csys 2 
 
v vmax + 1 6.2792 175 0 
v vmax + 1 6.2792 170 0 
v vmax + 1 6.2792 165 0 
v vmax + 1 6.2792 160 0 
v vmax + 1 6.2792 155 0 
v vmax + 1 6.2792 150 0//breakpoint 
v vmax + 1 6.2792 145 0 
v vmax + 1 6.2792 140 0 
v vmax + 1 6.2792 135 0 
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v vmax + 1 6.2792 130 0 
 
csys 3 
 
v vmax + 1 0 4.9406 3.8754 
vp 
vmax 
 
spldelete all 
spline 1 vran vmax - 30 vmax - 12 1 
spline 2 vran vmax - 11 vmax 1 
sp 
 
vcopy 2 31 vset span 0 0 
vp 
 
spline 3 vran vmax - 30 vmax - 12 1 
spline 4 vran vmax - 11 vmax 1 
sp 
 
bldelete all 
block 8 vmax - 12 vmax - 30 vmax vmax - 11 vmax - 43 vmax - 61 vmax - 31 vmax - 42 
blfactors 8 30 10 spnblk 11 
blex 8 
cset news cgro 11 
cset all 
cp 
 
view -1 0 0 
cp 
///////////////////////////////////////////////////////////////////////////////////////////////////// 
///////////////////////////////COMPLETE WITH STRUCTURE/////////////////////////////////////////////// 
///////////////////////////////////////////////////////////////////////////////////////////////////// 
save 33 
 
resu 33 
/////Merge vertices in non-sliding cell groups//////////// 
cset none 
cset news cgro 2 
cset cgro 3 
cset cgro 4 
cset cgro 5 
cset cgro 6 
cset cgro 7 
cset cgro 8 
cset cgro 9 
cset cgro 10 
cset cgro 11 
cp 
 
vset news cset 
vmerge vset 0.0005 
 
cset news cgro 3 
cset cgro 10 
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cp 
vset news cset 
vmerge vset 0.0001 
 
cset news cgro 8 
cset cgro 9 
cp 
vset news cset 
vmerge vset 0.0001 
 
save 66 
 
resu 66 
/////Find embedded cell sets////////////////////////////// 
cset news cgro 3 
vcdis cset 
cset cgro 2 
cp 
esfind 2 3 0.01 10 11 12 
 
cset news cgro 2 
csys 2 
cset gxyzrange 5 6.13 6.135 0 22 0 span 
cset gxyzrange 5 6.13 6.135 300 360 0 span 
cp 
 
cp 
esfind 2 5 0.02 30 11 12 
 
cset news cgro 5 
cset cgro 6 
cp 
esfind 5 6 0.01 30 11 12 
 
cset news cgro 3 
cset cgro 4 
cp 
esfind 3 4 0.005 30 11 12 
 
cset news cglist 2 7 
csys 2 
cp 
esfind 2 7 0.02 30 11 12 
 
cset news cgro 2 
cset cgro 10 
cp 
esfind 2 10 0.05 30 11 12 
 
cset news cgro 7 
cset cgro 8 
cp 
esfind 8 7 0.02 10 11 12 
 
cset news cgro 7 
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cset cgro 10 
cp 
esfind 10 7 0.0001 10 11 12 
 
cset news cgro 7 
cset cgro 5 
cp 
esfind 5 7 0.0001 10 11 12 
 
cset news cgro 10 
cset cgro 11 
cp 
esfind 10 11 0.005 30 11 12 
 
/////Compress all vertex and cell numbers////////////////// 
 
save 1 
resu 1 
 
// Boundaries 
// Inlet 
cset none 
cset cgro 4 
view 1 0 0 
cp 
bface 1 east 
bset news bgro 1 
bp 
 
 
// Outlet 
cset none 
cset cgro 9 
view 0 0 -1 
cp 
bface 2 north 
bset bgro 2 
bp 
 
 
// Symmetry 
// Merge vertices first otherwise 
// boundaries will be created on axis 
csys 3 
cset all 
view 1 0 0 
pltype hsurf 
cp 
bview 3 10 
view -1 0 0 
pltype hsurf 
cp 
 bview 3 10 
 
// Attached boundary 1 
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csys 2 
cset news cgro 0 
cset news gxyzrange 0 6 6.2 0 360 0 span 
view 1 1 1 
cp 
bface 4 east 
bset news bgro 4 
bp 
 
// Attached boundary 2 
cset news cgro 2 
view 1 1 1 
cp 
bface 5 west 
bset bgro 5 
bp 
 
//Attached Boundary 3 
csys 2 
cset news cgro 0 
cset news gxyzrange 0 4.15 4.2 0 360 0 span 
view 1 1 1 
cp 
bface 6 west 
bset news bgro 6 
bp 
 
//Attached Boundary 4 
 
cset news cgro 1 
cset news gxyzrange 1 4.0 4.15 0 360 0 span 
view 1 1 1 
cp 
bface 7 east 
bset news bgro 7 
bp 
bset bgro 6 
bp 
 
save 2 
 
resu 2 
movi on stand //yes 
#def step 1.5e-6 0 
// Note 1 
// NB Watch out for this: 
// #def speed 5000 //in RPM 
// rather use this: 
#def speed 3000  0 //in RPM 
 
// Must fill in at least up to 'ratio' 
// otherwise the dt will stay the same... 
// in cases where it can automatically and with safety use a bigger time step 
// Note 2 
unst on step fixed 10 1 //1 1.05  
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unst on step adjust 10 1.2 10   
 
#def dpt speed * 360 / 60 * step 0 
slide on 
//ssdef 1 2 0 0 dpt 0 arbitr 4 5 0.000001 20 const 1 1 2 
//ssdef 2 2 0 0 dpt 0 arbitr 6 7 0.000001 20 const 1 1 1 
 
ssdef 1 2 0 0 speed / 2 0 arbitr 4 5 0.000001 20 const 0 0 2 
ssdef 2 2 0 0 speed / 2 0 arbitr 6 7 0.000001 20 const 0 0 1 
 
ssdef 1 2 0 0 speed / 2 0 arbitr 4 5 0.0001 10 const 0 0 2 
ssdef 2 2 0 0 speed / 2 0 arbitr 6 7 0.0003 10 const 0 0 1 
 
bgdef 4 attach 
2 0 
bgdef 5 attach 
2 0 
bgdef 6 attach 
2 0 
bgdef 7 attach 
2 0 
 
bgdef 3 symm 
 
bgdef 1 pres 
0 300 0.05 0.001 
//bgdef 1 inlet const 
//2 -12.62 0 0 1.2 0.05 0.001 0.001 
bgdef 2 pres 
0 300 0.05 0.001 
 
 
mdef 0 fluid 
 
cgdef 0 0 
cgdef 1 0 
cgdef 2 0 
cgdef 3 0 
cgdef 4 0 
cgdef 5 0 
cgdef 6 0 
cgdef 7 0 
cgdef 8 0 
cgdef 9 0 
cgdef 10 0 
cgdef 11 0 
 
save 5 
 
resu 5 
/* 
cset news cglist  3 4 5 
cp 
vset news cset 
csys 0 
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vmerge vset 
cp 
 
cset news cglist  1 
cp 
vset news cset 
csys 0 
vmerge vset 
cp 
*/ 
 
// Note 3 
// No unused vertices are allowed for... do away with them 
cset all 
vset news cset 
vset unsel 
vdel vset 
 
vcomp all 
ccomp all 
wmesh .0254 
 
mate 0 
turb on 
dens const 1.204 
visc const 0.000018 
pgrad zero 
pref 100000 cm1 
 
rest init 
iter 20000 100 10 
restart previous 1640 
unst on 5.5e-7 adjust 1 1.5 50 
conv 0.01 
switch 21 on 
wdef 
 
save 
 
plty wire 
view 1 2 3 
bset news bgro 1 
 
bset bgro 0 
bset bgro 1 
bset bgro 2 
bset bgro 4 
bset bgro 5 
bset bgro 6 
bset bgro 7 
bp 
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APPENDIX C FAN-IN-WING GRID GENERATION CODE 
 

 SYMMETRY boundaries were applied to the front and back faces, as well as to 

the north and south faces of the grid.  Additionally, the north and south faces of the grid 

were placed relatively far from the surfaces of the wing section to minimize effects from 

these surfaces.  The west face was defined as an INLET type, with velocity specified as 

the desired freestream velocity.  The east face was defined as an OUTLET type, with 

FREE mass flow.  The mass flow fraction set at this boundary equated to the total mass 

flow entering the inlet boundary less the mass flow that entered the intake.  Figure C1 

depicts the C-grid used for numerical simulation of the fan-in-wing section. 

 

 
Figure C1. Fan-In-Wing C-Grid (10° AOA) 
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C1. FAN-IN-WING C-GRID FLO++ INPUT CODE 
 
reset 
 
// *** Mesh generation ***************************** 
// Define some user variables to  
// First define some spline points and their locations 
// Points for Spline 1 (5) 
#def AOA -30 0 
#def SPD 60 0 //in KNOTS 
#def EXH 0    //in M/S 
#def Wgrid 1.2 * 3 * .51444 * SPD 
#def W 0 * 10.7153 / Wgrid//.058        //in percent of total mass flow through grid 
#def SPAN .5 
 
#def sinAOA AOA sine 0 
#def cosAOA AOA cosi 0 
vread c:\naca4424.txt 
vp 
vset all 
csys 1 
vmove 0 AOA 0 
vp 
csys 0 
v vmax + 1 -2 0 0  
v vmax + 1 -2 3 0 
v vmax + 1 3 3 0 
v vmax + 1 3 sinAOA  0 
v vmax + 1 3 sinAOA  0 
v vmax + 1 3 -3 0 
v vmax + 1 -2 -3 0 
 
v vmax + 1 cosAOA 3 0 
v vmax + 1 cosAOA -3 0 
 
v vmax + 1 0 3 0  
v vmax + 1 0 -3 0 
 
vp 
vmax 
#def bp1 vmax - 3 
#def bp2 vmax - 1 
#def bp3 vmax - 2 
#def bp4 vmax 
#def sp1a vmax - 9 
#def sp1b vmax - 4 
 
 
spline 1 vlist vmax - 8 -bp1  -bp2 -sp1a vmax - 10 -sp1b -bp4 -bp3 vmax - 5 
sp 
 
#def sp2a vmax - 45 
#def sp2b vmax - 11 
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spline 2 vlist vmax - 7 -sp2a vmax - 44 vmax - 43 vmax - 42 vmax - 41 vmax - 40 vmax - 39 vmax - 38 
vmax - 37 vmax - 36 vmax - 35 
spline 2 vlist vmax - 34 vmax - 33 vmax - 32 vmax - 31 vmax - 30 vmax - 29 vmax - 28 vmax - 27 
spline 2 vlist vmax - 26 vmax - 25 vmax - 24 vmax - 23 vmax - 22 vmax - 21 vmax - 20 vmax - 19 
spline 2 vlist vmax - 18 vmax - 17 vmax - 16 vmax - 15 vmax - 14 vmax - 13 vmax - 12 
spline 2 vlist -sp2b vmax - 6 
sp 
 
vset all  
vcopy 2 46 vset 0 0 SPAN 
vp 
vmax  
 
#def bp5 vmax - 3 
#def bp6 vmax - 1 
#def bp7 vmax - 2 
#def bp8 vmax 
#def sp3a vmax - 9 
#def sp3b vmax - 4 
 
spline 3 vlist vmax - 8 -bp5 -bp6 -sp3a vmax - 10 -sp3b -bp8 -bp7 vmax - 5 
sp 
 
#def sp4a vmax - 45 
#def sp4b vmax - 11 
spline 4 vlist vmax - 7 -sp4a vmax - 44 vmax - 43 vmax - 42 vmax - 41 vmax - 40 vmax - 39 vmax - 38 
vmax - 37 vmax - 36 vmax - 35 
spline 4 vlist vmax - 34 vmax - 33 vmax - 32 vmax - 31 vmax - 30 vmax - 29 vmax - 28 vmax - 27 
spline 4 vlist vmax - 26 vmax - 25 vmax - 24 vmax - 23 vmax - 22 vmax - 21 vmax - 20 vmax - 19 
spline 4 vlist vmax - 18 vmax - 17 vmax - 16 vmax - 15 vmax - 14 vmax - 13 vmax - 12 
spline 4 vlist -sp4b vmax - 6 
sp 
 
 
block 1 vmax - 53 vmax - 54 vmax - 51 vmax - 52 vmax - 7 vmax - 8 vmax - 5 vmax - 6 
blpl 
blfactors 1 40 60 1 1 
 
blcd 1 5 10 1 40 1 10 1 
blcd 1 7 10 1 10 1 5 1 10 1 5 1 10 1 10 1 
blcd 1 8 10 1 10 1 5 1 10 1 5 1 10 1 10 1 
blcd 1 6 10 1 40 1 10 1 
 
blex 1 
cp 
 
cset all 
vcdist cset 
//vmerge all 0.018 
 
cset news gxyzrange 1 2.0 3.1 -3 3 0 SPAN 
view 1 0 0 
cp 
bview 2 
bp 
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cset news cgro 1 
view 0 0 -1 
cp 
bview 3 
bp 
 
 
cset news cgro 1 
view 0 0 1 
cp 
bview 3 
 
 
cset news gxyzrange 1 -2 3 2.9 3.1 0 SPAN 
cp 
view 0 1 0 
bface 4 east 
bp 
 
cset news gxyzrange 1 -2 3 -3.1 -2.9 0 SPAN 
cp 
view 0 -1 0 
bface 4 east 
bp 
cset news gxyzrange 1 -2.1 -1.9 -3 3 0 SPAN 
cp 
view -1 0 0 
cp 
bview 1 
bp 
//cset news gxyzrange 1 -1.1 -0.9 -2 2 0 SPAN 
//view -1 0 0 
//cp 
//bview 1 
//bp  
bset news bgro 4 
bp 
cp 
cset news cran 1121 1121 1 
cset cran 1081 1081 1 
cset cran 1041 1041 1 
cset cran 1001 1001 1 
cp 
bface 5 west 
bp 
cset all 
cp 
cset news cran 401 401 1 
cp 
bface 6 west 
bp 
cset all 
cp 
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energy on 
// turb on 
tref 273 
pref 100000 1 
// *** Material properties and initial conditions *** 
dens ideal 
visc const 1.8e-5 
// *** Cell and boundary group definitions ******** 
bgdef 1 inlet const 
0 SPD * .514444 0 0 1 0.05 0.001 0.001 
bgdef 2 outlet const  
free 1 - W  
bgdef 3 symmetry 
bgdef 4 symm 
bgdef 5 outlet const 
free W 
bgdef 6 inlet const 
0 cosAOA * EXH sinAOA * EXH 0 1 0.05 0.001 0.001 
//save 99 
//resu 99 
cset all 
vcdist cset 
vmerge all 0.01 
wmesh 
// *** Solution control ******************************* 
iter 1000 1  
conv 0.001 
monit 4 
// *** Writing data for the solution stage ********** 
wdef 
// *** Save the modelling status ******************* 
save 
view 1 2 3 
plty norm 
bset none 
bset bglist 1 2 4 5 6 0 
bp 
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APPENDIX D COMPLETE DATA LISTING 

 

Date Run # 
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12-Mar-03 1 4007.91 29.915 39.915 30.01177 30.82329 35.39967 29.90694 29.88255 33.03513 32.93059 32.75082 30.04177 26.92398 27.86993 29.54284 30.34437 29.7156 28.83954 28.73711 28.90555 30.28405 
 2 4984.176 29.91 39.91 30.08067 31.31579 38.3769 29.89977 29.86183 34.8148 34.64465 34.43378 30.14158 25.22351 26.44574 29.02262 30.35273 29.60159 28.18129 28.04129 28.27832 30.45179 
 3 5020.334 29.91 39.91 30.17326 31.31836 38.39609 29.89889 29.85529 34.83842 34.70758 34.43426 30.15047 25.33848 26.43721 28.95622 30.28715 29.60028 28.2085 28.05964 28.32001 30.45464 
 4 2993.46 29.91 39.91 30.1775 30.42135 32.91546 29.90388 29.88979 31.54044 31.55588 31.46411 29.97223 28.33048 28.8438 29.74718 30.16362 29.79163 29.32601 29.27024 29.38331 30.12038 
                       
 5 3016.227 29.889 39.889 30.12854 30.4219 33.00929 29.88871 29.87569 31.55864 31.57554 31.48812 29.95877 28.43151 28.88968 29.76895 30.18032 29.77964 29.31772 29.25602 29.37715 30.10799 
 6 4013.942 29.889 39.889 30.15687 30.79619 35.28187 29.88437 29.8577 32.98845 32.89756 32.73125 30.01978 27.25088 27.99028 29.52885 30.30656 29.69394 28.84692 28.7422 28.92947 30.25163 
 7 5013.579 29.889 39.889 30.18482 31.22523 38.30866 29.88033 29.84195 34.7689 34.64464 34.43115 30.12725 25.7764 26.74534 29.08275 30.33688 29.58743 28.25165 28.10579 28.35445 30.42701 
 8 5496.772 29.889 39.889 30.22351 31.48411 40.00836 29.87642 29.82524 35.79985 35.80268 35.37594 30.19476 25.00366 26.03919 28.76458 30.30182 29.52815 27.90805 27.74767 28.09647 30.50174 
 9 5993.468 29.889 39.889 30.25464 31.82932 42.0174 29.87131 29.8123 37.17311 37.17908 36.54715 30.2773 24.08855 25.1674 28.26901 30.14695 29.47378 27.47536 27.27188 27.58007 30.55831 
 10 6498.149 29.889 39.889 30.30477 32.23154 44.18715 29.86852 29.79153 38.24192 38.48933 37.84382 30.3586 23.22706 24.28056 27.65514 29.81851 29.41189 27.08331 26.85379 27.21198 30.58063 
 11 7022.144 29.889 39.889 30.32025 32.67074 46.63439 29.86693 29.78284 39.87407 39.98784 39.22866 30.50484 22.24592 23.18841 26.8271 29.35083 29.34713 26.49557 26.26049 26.64927 30.55778 
 12 7008.61 29.889 39.889 30.33454 32.6868 46.59722 29.86521 29.78581 39.8001 39.94766 39.19628 30.49863 22.25719 23.21587 26.8691 29.36114 29.34636 26.50496 26.25999 26.66749 30.57086 
 13 5999.041 29.889 39.889 30.34803 31.87912 41.87659 29.87041 29.80856 37.12073 37.14766 36.50587 30.26618 24.04813 25.17619 28.31937 30.20619 29.476 27.46285 27.2654 27.56771 30.56019 
 14 5007.93 29.889 39.889 30.32657 31.29217 38.15807 29.87489 29.82604 34.74819 34.63784 34.42517 30.11575 25.72317 26.78777 29.15749 30.40153 29.57888 28.23539 28.08281 28.31521 30.41778 
 15 4004.298 29.889 39.889 30.30335 30.8058 35.15823 29.87911 29.84862 32.97117 32.9073 32.73314 30.01411 27.22264 28.01953 29.56235 30.33559 29.68367 28.83348 28.7341 28.91205 30.239 
 16 2991.415 29.889 39.889 30.28142 30.41402 32.83494 29.88099 29.86746 31.52502 31.5298 31.45936 29.94644 28.42961 28.91183 29.77784 30.17632 29.76452 29.30408 29.24532 29.36107 30.09044 
                       

19-Feb-03 1 1012.356 30.1 40.1 29.70405 30.17218 30.65707 30.09982 30.09651 30.25735 30.26511 30.2755 30.10565 29.9593 30.0109 30.08458 30.11704 30.08916 30.05184 30.04634 30.07274 30.13297 
 2 2002.583 30.1 40.1 29.76827 30.29854 31.62076 30.09972 30.0917 30.81089 30.80483 30.81581 30.12612 29.42599 29.64387 30.03839 30.22226 30.05137 29.85586 29.831 29.90439 30.20824 
 3 3005.606 30.1 40.1 29.86097 30.54717 33.26515 30.09688 30.07963 31.8005 31.79553 31.69846 30.16677 28.4797 29.00381 29.93586 30.36726 29.98707 29.50767 29.45264 29.56973 30.32256 
 4 4004.432 30.095 40.095 29.93266 30.92902 35.61672 30.08793 30.06103 33.2622 33.15762 32.95134 30.22495 27.11026 28.0152 29.70547 30.52403 29.89431 29.00628 28.9149 29.07989 30.46593 
 5 4519.468 30.095 40.095 29.96872 31.23489 37.08035 30.0852 30.04917 34.16144 34.01651 33.76764 30.26935 26.25888 27.32577 29.49495 30.58308 29.84395 28.66505 28.53978 28.884 30.55084 
 6 5014.752 30.095 40.095 30.01799 31.49818 38.68181 30.08414 30.04733 35.11112 34.95254 34.69494 30.32678 25.36913 26.53322 29.13726 30.49957 29.78771 28.34855 28.21123 28.47474 30.63653 
 7 5021.51 30.095 40.095 30.08229 31.51452 38.70246 30.08294 30.04822 35.10823 34.94917 34.69503 30.32863 25.27978 26.52293 29.14147 30.49515 29.78474 28.3318 28.18235 28.42934 30.64417 
 8 4008.017 30.095 40.095 30.08608 31.01855 35.53113 30.08557 30.05934 33.20282 33.14166 32.94582 30.22105 27.05963 28.00375 29.70055 30.50961 29.89139 29.00475 28.90104 29.06882 30.46322 
 9 2991.922 30.095 40.095 30.05839 30.62015 33.16106 30.0878 30.07204 31.75778 31.75374 31.68036 30.15591 28.46389 29.01868 29.94814 30.3705 29.97309 29.49566 29.4413 29.55023 30.30863 
                       
 10 3020.418 30.08 40.08 29.96136 30.5982 33.21059 30.07676 30.06304 31.77389 31.797 31.68909 30.15362 28.45038 29.00222 29.93243 30.35551 29.96338 29.48627 29.43064 29.54767 30.3024 
 11 4005.047 30.08 40.08 30.07855 31.0004 35.52925 30.07051 30.04715 33.16914 33.10573 32.91951 30.20941 27.08057 28.02516 29.70576 30.50216 29.87383 28.99452 28.89177 29.05764 30.44539 
 12 4501.666 30.08 40.08 30.12702 31.23481 36.98861 30.06974 30.04438 34.06396 33.94362 33.7421 30.25692 26.25186 27.3629 29.5126 30.56782 29.83255 28.67084 28.55041 28.85822 30.53893 
 13 5010.146 30.07 40.07 30.11963 31.50573 38.67817 30.05705 30.01575 35.01613 34.90215 34.63734 30.30402 25.30694 26.53814 29.14174 30.48404 29.75779 28.31963 28.17388 28.41536 30.61738 
 14 5036.135 30.07 40.07 30.16072 31.51396 38.70137 30.05673 30.01722 35.07799 34.96421 34.69873 30.30182 25.27979 26.52205 29.12104 30.49331 29.75446 28.30821 28.15692 28.40214 30.61626 
 15 3998.561 30.07 40.07 30.16504 31.00101 35.52101 30.06026 30.03197 33.19759 33.14601 32.93408 30.19664 27.03697 27.99563 29.67883 30.49209 29.86177 28.97523 28.87727 29.03898 30.43409 
 16 2989.82 30.07 40.07 30.1752 30.59533 33.09997 30.0625 30.05 31.71637 31.7312 31.653 30.13083 28.45577 29.01135 29.92905 30.34418 29.94816 29.47675 29.42002 29.53331 30.2795 
                       
 17 3003.65 30.08 40.08 30.03505 30.61041 33.16804 30.07666 30.05993 31.73999 31.73692 31.66548 30.1478 28.46903 29.00818 29.93108 30.35441 29.96556 29.49028 29.43332 29.54476 30.30063 
 18 4010.883 30.08 40.08 30.12608 31.01 35.53754 30.07192 30.04903 33.18494 33.09414 32.9224 30.20822 27.07736 28.02079 29.69296 30.5115 29.8781 28.99652 28.89429 29.06058 30.4485 
 19 4996.836 30.08 40.08 30.1785 31.51285 38.69239 30.06947 30.02737 35.0308 34.84229 34.66662 30.31356 25.35021 26.57325 29.1516 30.51419 29.77405 28.34231 28.19631 28.42643 30.63136 
 20 5006.091 30.075 40.075 30.2063 31.51226 38.66379 30.06348 30.01752 35.0553 34.87352 34.662 30.30821 25.32054 26.53571 29.12453 30.47939 29.76318 28.32601 28.17768 28.41484 30.62205 
 21 4000.721 30.075 40.075 30.21785 31.00892 35.54733 30.0654 30.03953 33.1922 33.12721 32.95352 30.20033 27.04546 27.98219 29.67275 30.48713 29.87029 28.98172 28.8807 29.03351 30.44453 
 22 3012.774 30.075 40.075 30.21673 30.60875 33.15449 30.06749 30.04787 31.75097 31.74345 31.66916 30.1361 28.42725 28.99052 29.92792 30.35685 29.95213 29.47043 29.41471 29.52909 30.29052 
                       

7-Feb-03 1 2002.436 29.925 39.925 29.85831 30.11081 31.42075 29.9201 29.91346 30.61852 30.62195 30.61176 29.94424 29.29371 29.51116 29.88835 30.06291 29.86492 29.66955 29.64393 29.72813 30.0186 
 2 3007.383 29.925 39.925 29.94619 30.34332 33.02303 29.91983 29.90431 31.60491 31.62294 31.51341 29.99146 28.44968 28.93258 29.82081 30.23155 29.80712 29.34262 29.28583 29.40262 30.1437 
 3 4027.306 29.925 39.925 29.99325 30.76922 35.38493 29.91473 29.88608 33.08373 32.98331 32.79999 30.05751 27.22987 28.00138 29.58639 30.37568 29.71707 28.85678 28.76021 28.94155 30.30269 
 4 4504.302 29.925 39.925 30.02457 30.98939 36.74827 29.91322 29.87878 33.87749 33.74819 33.56891 30.09967 26.5154 27.42651 29.41817 30.42237 29.6668 28.56598 28.44921 28.76727 30.38184 
 5 5012.114 29.925 39.925 30.05364 31.25843 38.3669 29.91152 29.86717 34.8402 34.70473 34.49757 30.15446 25.72728 26.75784 29.14152 30.40703 29.60419 28.25543 28.11848 28.35439 30.47561 
 6 5505.649 29.925 39.925 30.09794 31.55087 40.11754 29.90959 29.84971 35.89141 35.90778 35.47718 30.22765 24.84944 26.0098 28.82811 30.39395 29.55472 27.88604 27.71833 28.01715 30.54956 
 7 6023.673 29.925 39.925 30.13311 31.90931 42.29569 29.90377 29.84452 37.39558 37.39111 36.70564 30.31784 23.93554 25.08535 28.25182 30.18024 29.49165 27.43887 27.23421 27.60692 30.6113 
 8 6502.55 29.925 39.925 30.16844 32.27588 44.46424 29.90229 29.81628 38.44922 38.73611 38.06402 30.40469 23.07853 24.19294 27.61484 29.79652 29.42618 27.04323 26.80927 27.16547 30.61284 
 9 6516.498 29.925 39.925 30.17724 32.29144 44.4719 29.90226 29.82969 38.44305 38.75193 38.10366 30.3961 23.06445 24.16897 27.58897 29.78056 29.42215 27.03401 26.81106 27.13942 30.60377 
 10 5995.325 29.925 39.925 30.19575 31.90538 42.06491 29.90589 29.84928 37.25882 37.25357 36.58427 30.30144 23.97498 25.16051 28.3232 30.22093 29.49463 27.4653 27.27456 27.54737 30.59151 
 11 5511.87 29.925 39.925 30.21007 31.59086 40.11606 29.90553 29.84639 35.89411 35.94042 35.46402 30.21669 24.78586 25.97138 28.82565 30.41661 29.55079 27.8645 27.69815 27.97946 30.52835 
 12 4996.961 29.925 39.925 30.21753 31.28859 38.29881 29.90866 29.86368 34.83558 34.75139 34.49792 30.13818 25.66009 26.76132 29.17993 30.44859 29.60736 28.23606 28.08052 28.29804 30.44963 
 13 4502.781 29.925 39.925 30.21589 31.03058 36.62947 29.91144 29.87229 33.87565 33.75037 33.56936 30.088 26.48305 27.47011 29.45195 30.46733 29.6627 28.55205 28.42224 28.71582 30.35091 
 14 3995.233 29.925 39.925 30.21567 30.80908 35.24014 29.9131 29.8852 33.01982 32.97665 32.75759 30.04861 27.20958 28.04957 29.62316 30.40048 29.71655 28.86104 28.7662 28.91254 30.27911 
 15 3740.299 29.925 39.925 30.22337 30.70443 34.58546 29.91336 29.88965 32.59891 32.55986 32.43319 30.03023 27.54137 28.29245 29.69001 30.37288 29.73839 28.98971 28.90248 29.05088 30.23304 
 16 3494.386 29.925 39.925 30.22614 30.60231 33.96707 29.91404 29.89317 32.23406 32.22322 32.07611 30.01503 27.86122 28.5456 29.74954 30.32611 29.7568 29.10674 29.03475 29.21891 30.1877 
 17 3002.507 29.925 39.925 30.21868 30.42977 32.93048 29.91423 29.89916 31.57839 31.59282 31.49008 29.98147 28.42715 28.93567 29.82304 30.23005 29.79687 29.32673 29.27056 29.38047 30.12377 
 18 1992.078 29.925 39.925 30.21114 30.16097 31.34228 29.91868 29.90979 30.61086 30.61648 30.60733 29.94082 29.28786 29.5165 29.89172 30.06025 29.86052 29.66942 29.64197 29.7156 30.00785 
                       

29-Jan-03 1 2056.013 30.18 40.18 30.16796 30.3971 31.71224 30.17762 30.16709 30.92533 30.91478 30.91529 30.20588 29.50551 29.7344 30.13187 30.31694 30.12181 29.90768 29.88086 29.96032 30.28153 
 2 2054.858 30.18 40.18 30.17614 30.39676 31.72128 30.17586 30.16898 30.91686 30.90675 30.90737 30.20525 29.50687 29.73406 30.13105 30.31651 30.12076 29.90756 29.87967 29.96617 30.28095 
 3 3002.958 30.195 40.195 30.21657 30.68723 33.29744 30.18693 30.16942 31.8625 31.88858 31.80282 30.25886 28.68766 29.16755 30.04953 30.46931 30.06999 29.58699 29.53181 29.64759 30.39888 
 4 3503.507 30.195 40.195 30.23553 30.86916 34.36949 30.18793 30.16198 32.54991 32.54554 32.37273 30.29738 28.11865 28.73351 29.93639 30.53429 30.03316 29.36649 29.29338 29.50112 30.46293 
 5 4004.031 30.195 40.195 30.25109 31.07483 35.63196 30.18612 30.15527 33.34348 33.26484 33.07106 30.33353 27.46744 28.24384 29.79117 30.57857 29.98505 29.10657 29.01272 29.18332 30.54629 
 6 4484.607 30.195 40.195 30.27496 31.30228 37.01203 30.18489 30.1519 34.13886 33.99636 33.85923 30.37765 26.75435 27.66613 29.61382 30.61207 29.93634 28.802 28.69144 28.99781 30.62244 
 7 5003.795 30.195 40.195 30.27897 31.55826 38.69161 30.18336 30.13693 35.0871 35.00603 34.79126 30.42935 25.96179 26.98814 29.33082 30.55519 29.87966 28.47846 28.33745 28.55476 30.70229 
 8 5502.922 30.195 40.195 30.30987 31.86276 40.50519 30.18058 30.11982 36.16861 36.22814 35.79718 30.50972 25.14096 26.25458 28.99365 30.51983 29.81827 28.10533 27.94894 28.23978 30.77043 
 9 4984.549 30.195 40.195 30.31702 31.57539 38.64951 30.18418 30.13333 35.0754 34.97282 34.8129 30.42934 25.97054 26.98994 29.34688 30.58491 29.88149 28.48159 28.34096 28.56932 30.70456 
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12-Mar-03 1 30.52937 29.909 39.5379 30.36939 39.40675 39.42151 525.2055 525.747 533.4655 519.97 538.36 546.47 548.77 550.25 2.3274 -7.4933 1.3564 1.1007 1.0438 0.6345 
2 30.83467 29.89719 42.06413 30.63058 41.88869 41.87134 525.2055 525.2143 535.8227 515.96 540.35 557.73 561.22 564.04 3.0754 -14.603 1.7003 1.159 1.0681 0.6319 

 3 30.85734 29.89719 42.03722 30.63407 41.83996 41.83566 526.9159 526.2374 537.1464 517.26 540.52 559.29 563.06 565.41 3.1424 -14.912 1.7255 1.1601 1.0684 0.6338 
 4 30.25444 29.89514 35.22137 30.14788 35.12471 35.12003 528.0936 529.4577 536.8282 528.98 540.44 540.58 542.45 543.11 2.0487 -3.7955 1.1914 1.0543 1.0251 0.6063 
                      
 5 30.25075 29.88634 36.3711 30.14463 36.32236 36.32238 528.3116 529.0604 535.6364 527.61 539.98 540.28 542.03 542.33 1.451 -2.7552 0.8927 1.0555 1.0243 0.6394 
 6 30.51107 29.88093 38.79422 30.34044 38.67224 38.67774 528.8548 528.222 536.1638 522.94 539.49 549.43 551.5 552.26 2.3042 -7.275 1.3457 1.1005 1.0426 0.6507 
 7 30.84838 29.87813 42.47195 30.60945 42.30033 42.27528 527.7684 526.4536 536.5733 516.9 539.39 559.66 563.04 564.42 3.1236 -14.669 1.7335 1.1592 1.0669 0.6445 

8 30.99457 29.87407 43.93429 30.74488 43.71392 43.71644 527.1356 525.2003 536.9565 514.35 539.59 564.84 569.7 571.23 3.3411 -18.09 1.7768 1.1946 1.0806 0.6463 
 9 31.16535 29.87164 45.55206 30.91093 45.31479 45.30009 527.3993 524.8628 538.1096 513.43 541.96 572.6 579.09 581.33 3.6482 -21.549 1.7419 1.2387 1.098 0.6439 
 10 31.25056 29.86738 47.91632 31.03719 47.62826 47.62609 527.322 524.005 538.8093 513.84 541.79 580.95 587.69 589.7 4.0134 -23.982 1.653 1.2803 1.115 0.6361 
 11 31.31035 29.86752 50.77958 31.22962 50.50756 50.45302 526.095 522.829 539.1046 
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511.88 541.81 589.35 597.46 599.25 4.3799 -28.525 1.6766 1.331 1.1352 0.6297 1.6896 
 12 31.32116 29.86617 50.8315 31.21841 50.50891 50.47976 526.872 523.1876 539.21 512.37 541.76 590.05 597.69 599.13 4.5466 1.7232 1.3293 1.1345 0.6302 1.7375 

13 31.17298 29.86523 45.37818 30.90541 45.12757 45.10178 527.1532 525.8542 539.1538 513.6 541.33 572.98 579.78 582.39 3.8141 -23.313 1.8723 1.2374 1.0985 0.6369 1.8896
 14 30.83554 29.86342 44.2213 30.59089 44.02934 44.01851 528.8723 528.0251 538.8339 519.41 540.78 561.35 564.86 566.71 3.2317 -15.047 1.7485 1.1592 1.0679 0.6355 1.7672 
 15 30.49833 29.86427 43.06224 30.32559 42.9587 42.93924 529.1554 529.2309 538.4612 525.52 540.17 550.42 552.97 554.18 2.4915 -7.7056 1.3761 1.1007 1.0441 0.6302 1.3912 
 16 30.23345 29.86415 39.27833 30.12526 39.21123 39.25622 528.0514 529.9622 538.4067 530.71 541.31 540.97 543.14 543.72 1.0214 -1.8701 0.5727 1.0546 1.0257 0.5948 0.5787 
                       

19-Feb-03 1 30.14521 30.10336 33.62557 30.13256 33.59354 33.60307 515.912 521.9589 527.4696 526 536.29 521.19 522.52 522.54 0.9589 -0.3016 0.399 1.0056 1.0061 0.262 0.3964 
 2 30.26227 30.10425 33.3764 30.21536 33.31636 33.34681 519.1499 522.6585 529.9077 525.62 539.6 525.56 527.02 527.52 1.0892 -1.098 0.7894 1.0238 1.0111 0.6048 0.7857 
 3 30.45951 30.10215 36.51247 30.36032 36.44848 36.42233 521.8305 524.5886 531.7376 523.5 539.38 534.56 536.69 537.09 1.9702 -3.8409 1.2402 1.0557 1.0247 0.633 1.2375 
 4 30.71198 30.09093 39.06743 30.55277 38.91182 38.9296 524.0032 524.8294 533.6026 520 538.32 545.46 547.91 548.93 2.5154 -8.1522 1.4757 1.1014 1.0439 0.6373 1.4747 
 5 30.87278 30.08932 41.20012 30.67856 41.01614 40.99767 524.0296 524.5956 534.9843 518.17 540.57 550.91 553.89 555.99 3.1177 -12.508 1.7796 1.1302 1.0559 0.6371 1.7787 
 6 31.03399 30.08726 42.17799 30.82096 41.95266 41.93143 523.3845 523.6657 535.7085 515.68 539.72 554.97 559.29 562.48 3.4802 -16.64 1.9592 1.1614 1.0676 0.6463 1.9569 
 7 31.04327 30.08338 42.17071 30.82425 41.96052 41.94711 525.0966 524.7766 536.6559 516.64 539.63 558 561.75 564.51 3.3159 -15.851 1.8103 1.1614 1.0695 0.6283 1.8106 
 8 30.70921 30.08288 39.65855 30.54534 39.53086 39.5506 524.3003 526.5204 536.9214 523.42 541.15 546.34 549.13 551.05 2.2403 -7.1961 1.2797 1.1006 1.0446 0.6224 1.2802 
 9 30.4436 30.08082 36.20557 30.34025 36.18045 36.14643 522.5864 526.8069 536.22 528.26 538.96 536.14 538.61 539.61 1.5942 -3.0033 0.9323 1.0549 1.0256 0.6013 0.9318 
                       
 10 30.43988 30.07527 36.88141 30.33877 36.82776 36.83219 527.5557 528.0356 535.3552 527.34 539.81 539.54 541.37 541.84 1.4687 -2.7823 0.8835 1.056 1.0249 0.6309 0.886 
 11 30.69139 30.06924 39.77405 30.53089 39.66383 39.65212 527.8159 527.1761 536.5259 523.07 541.27 548.25 550.58 552.37 2.3825 -7.6279 1.3877 1.1 1.0434 0.6358 1.3916 
 12 30.86066 30.07604 40.4829 30.66623 40.2976 40.27842 527.1163 525.6802 535.995 519.59 538.52 552.82 555.38 558.19 3.1116 -12.187 1.7472 1.1284 1.0552 0.636 1.7504 
 13 31.01864 30.0586 42.15737 30.80232 41.95731 41.9605 527.3518 525.4305 536.9952 516.99 540.98 559.84 562.9 565.81 3.1091 -14.807 1.6923 1.1603 1.0693 0.6266 1.6966 
 14 31.01485 30.05709 42.1565 30.8022 41.97014 41.98237 527.6524 525.7153 537.2835 517.28 540.34 559.96 563.19 566.12 2.9275 -13.984 1.6004 1.1624 1.0691 0.6354 1.6049 
 15 30.68506 30.05448 40.21264 30.51742 40.0595 40.04241 529.0288 528.1534 537.0145 523.69 540.38 549.74 552.08 553.86 2.8276 -8.9705 1.6041 1.1014 1.0441 0.6346 1.611 
 16 30.41576 30.05406 39.17285 30.3103 39.10952 39.09459 529.8286 529.8409 537.12 529.29 541.77 541.39 543.15 544.08 1.8985 -3.5102 1.1218 1.0547 1.0246 0.623 1.1275 
                       
 17 30.43569 30.07299 36.66271 30.33341 36.5935 36.56335 528.8319 528.9725 535.6434 527.83 539.67 540.7 542.44 542.89 2.0709 -3.8416 1.2209 1.0547 1.0248 0.6189 1.2256 
 18 30.69608 30.07216 39.37631 30.5338 39.25099 39.23641 528.403 527.4731 536.6577 523.28 541.37 549.02 551.43 553.06 2.5372 -8.0674 1.447 1.1 1.044 0.6275 1.4516 
 19 31.02626 30.07198 41.70804 30.80705 41.44991 41.46084 527.3958 525.2759 536.6507 516.88 539.39 558.95 562.33 565.03 3.4663 -16.347 1.9045 1.1597 1.068 0.6362 1.9084 
 20 31.01497 30.06273 41.70022 30.80276 41.49573 41.46027 528.0831 526.0054 537.2835 517.47 541.43 560.11 563.35 566.23 3.409 -16.118 1.856 1.1606 1.0687 0.633 1.8616 
 21 30.68613 30.06114 38.73657 30.52367 38.62475 38.62798 529.2221 528.338 537.403 524.02 541.07 549.94 552.29 554.17 2.221 -7.0746 1.2622 1.1011 1.0442 0.6317 1.2676 
 22 30.4269 30.0601 37.0248 30.32108 36.97009 36.97554 529.1975 529.6845 536.7069 528.74 539.16 541.09 543.15 544.21 1.473 -2.7732 0.864 1.0553 1.0253 0.614 0.8681 
                       

7-Feb-03 1 30.07611 29.91149 33.09907 30.02353 33.05272 33.05163 522.5038 525.0561 530.8552 526.46 538.01 528.71 529.65 529.71 1.3696 -1.4087 1.0525 1.0234 1.0106 0.6232 1.0567 
 2 30.28521 29.91523 36.03746 30.17542 35.97606 35.97188 524.3811 526.2005 533.1614 524.99 538 536.89 538.73 538.8 1.6751 -3.2348 1.0489 1.0558 1.0245 0.6388 1.0548 

30.55756 29.91112 39.62787 30.38509 39.52287 39.53625 524.5288 525.2829 535.0757 521.36 540.57 546.06 548.57 549.42 2.0661 -6.7251 1.2124 1.1022 1.044 0.6401 1.2192 
 4 30.70847 29.90993 41.88408 30.49962 41.67043 41.6692 525.6573 524.9823 535.6013 519.08 539.1 551.84 554.29 555.46 3.2418 -12.73 1.8584 1.1283 1.0543 0.6458 1.8699 
 5 30.87547 29.90568 41.84632 30.63799 41.66904 41.67793 525.311 524.629 536.7122 516.71 540.81 557.85 561.41 562.62 2.8676 -13.659 1.5961 1.1603 1.0679 0.6389 1.6058 

6 31.03074 29.90491 43.866 30.78804 43.64357 43.64367 524.7591 523.7114 537.0901 513.86 539.69 563 567.89 569.47 3.3719 -18.702 1.8314 1.1968 1.0812 0.6487 1.8418 
 7 30.96918 45.70346 525.1194 523.4354 537.7001 541.14 577.89 31.19632 29.90425 45.96643 45.7496 510.42 571.13 580.11 3.7458 -24.401 1.9515 1.244 1.0994 0.6478 1.9631 
 8 31.25252 29.90259 46.58622 31.09024 46.2699 46.2743 524.4989 521.9764 537.8495 506.86 539.71 578.32 585.09 587.61 4.1087 -30.349 2.0924 1.2866 1.1155 0.6463 2.1038 
 9 31.24667 29.90196 46.66363 31.09211 46.40939 46.39661 524.2071 521.8429 538.2679 507.09 541.09 578.62 585.62 588.27 3.803 -28.34 1.9312 1.2868 1.1169 0.6391 1.9409 
 10 31.17646 29.89963 44.20894 30.9353 43.92257 43.93443 526.4694 524.172 538.4858 511.69 540.73 572 578.1 580.47 3.7539 -23.983 1.939 1.2395 1.0981 0.6448 1.9522 
 11 31.01821 29.89853 42.26522 30.78151 42.01173 42.02035 527.2798 525.4059 538.4366 515.09 540.88 566.37 570.83 572.73 3.4683 -19.301 1.843 1.1972 1.0829 0.6364 1.8575 
 12 30.85533 29.89854 40.2647 30.6245 40.05904 40.03562 528.1411 527.0214 538.6651 519.07 541.35 561.01 564.05 566.06 3.2742 -15.268 1.761 1.1609 1.0685 0.636 1.7763 
 13 30.68511 29.89798 38.33824 30.47894 38.13132 38.13401 528.2044 527.8106 537.9304 521.84 539.37 554.93 557.51 559.78 3.0241 -11.575 1.6405 1.1285 1.0557 0.631 1.6551 
 14 30.53025 29.90083 36.62991 30.36556 36.48418 36.49179 529.2749 529.1993 538.31 525.21 541.2 550.48 552.88 553.97 2.4326 -7.5998 1.3645 1.101 1.0438 0.6354 1.378 

15 30.45617 29.90006 35.95125 30.30022 35.83953 35.82491 529.7882 529.7302 538.1096 526.52 540.3 548.45 550.46 551.16 2.308 -6.3547 1.3066 1.0879 1.0383 0.6371 1.32 
 16 30.38058 29.89897 35.19306 30.2409 35.08605 35.1492 529.0288 529.8971 537.5981 527.49 538.87 545.68 547.85 548.48 1.3571 -3.2528 0.7584 1.0761 1.0338 0.627 0.7659 

17 29.8994 34.09151 30.15729 34.02663 34.03908 528.846 537.9638 -2.6983 0.8441 1.0551 1.0252 0.6137 0.8525 
 18 30.06371 29.90285 33.07519 30.01209 33.03524 33.0486 529.3346 531.5952 537.5032 533.58 540.25 536.19 537.45 537.22 1.0285 -0.9367 0.6015 1.0233 1.0122 0.54 0.6078 

                     
29-Jan-03 1 30.34443 30.17342 33.38856 30.29736 33.34264 33.33953 526.9721 529.129 535.095 530.96 538.95 534.21 535.19 534.91 1.3967 -1.3399 0.8311 1.0247 1.0127 0.5505 0.8311 

 2 30.34223 30.17151 33.39957 30.29525 33.33909 33.35902 524.8891 528.4786 535.1917 531.07 539.35 532.3 533.78 534.26 1.2721 -1.2142 0.7481 1.0245 1.0128 0.5395 0.7471 
 3 30.54374 30.18231 35.72753 30.44994 35.67087 35.65158 526.5819 528.5173 536.3009 528.4 541.22 539.43 541.49 541.77 1.7882 -3.3194 1.0361 1.0554 1.0253 0.614 1.0354 
 4 30.66072 30.18372 37.57776 30.54075 37.49177 37.48847 527.2182 528.1903 536.1936 525.91 539.05 543.77 546.03 546.45 1.9897 -4.8542 1.142 1.0767 1.0336 0.6358 1.1414 
 5 30.80353 30.18215 39.6606 30.66489 39.55363 39.51284 527.5118 527.8721 537.1024 523.9 540.93 548.92 551.34 551.92 2.617 -8.197 1.4826 1.1013 1.0437 0.6401 1.482 
 6 30.95124 30.18157 41.93271 30.78514 41.75382 41.76234 525.8296 526.153 536.9425 520.9 539.4 551.99 555.2 556.91 2.8908 -11.034 1.6013 1.1269 1.0546 0.6364 1.5983 
 7 31.11285 30.18054 41.61274 30.93448 41.40218 41.39661 526.327 525.7891 537.8179 518.3 541.06 558.97 562.52 563.64 3.2348 -15.031 1.7568 1.1592 1.0678 0.6361 1.7541 
 8 31.26457 30.17853 43.69213 31.08462 43.44746 43.43734 525.4833 523.6886 537.8688 514.7 540.73 563.55 568.52 570.77 3.5968 -19.925 1.9296 1.1962 1.082 0.6402 1.9245 
 9 31.11543 30.18121 41.27962 30.93089 41.0497 41.05391 527.0776 525.9807 537.8513 518.46 539.98 559.54 563.12 564.39 3.295 -15.278 1.7773 1.159 1.068 0.6329 1.7754 
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 30.26264 530.3331 530.12 541.24 541.49 543.47 543.77 1.4556 
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12-Mar-03 1 10.543 3985.8 0.1636 0.5725 0.1609 0.3219 0.1561 0.5467 1.4411 11.256 1.4517 11.193 548.48 32.904 0.3629 534.41 411.08 125.3 18.564 148.51 89.544 
 2 20.561 4958 0.2009 0.7063 0.1975 0.3973 0.1932 0.6811 1.7847 21.685 1.7982 21.579 561 34.632 0.4498 539.18 511.81 156 28.642 229.14 

3 20.972 4987.4 0.2011 0.7067 0.1985 0.399 0.193 0.6795 1.7853 21.805 1.8014 21.673 34.655 0.4505 540.61 156.43 28.776 230.2 173.38 
 4 5.3232 2967.7 0.1203 0.4173 0.1208 0.2398 0.1174 0.408 1.0652 4.7802 1.0763 4.7381 541.99 31.515 0.2687 534.28 304.33 92.761 10.189 81.508 37.905 
                       
 5 3.8664 2990.5 0.1215 0.4217 0.1221 0.2423 0.1188 0.4131 1.0772 4.6772 1.0889 4.6387 541.48 31.535 0.2717 533.6 307.5 93.725 10.42 83.359 37.109 
 6 10.214 3980.2 0.163 0.5689 0.1607 0.3203 0.1562 0.5453 1.4346 10.947 1.4505 10.862 551.02 32.87 0.3623 536.92 411.38 125.39 18.577 148.61 86.896 
 7 20.631 4978.2 0.2003 0.7036 0.1978 0.3972 0.1935 0.6806 1.7814 21.275 1.7993 21.146 562.29 34.612 0.4497 540.43 512.24 156.13 28.703 229.62 169.17 
 8 25.473 5462.9 0.2179 0.7685 0.218 0.4399 0.2103 0.7434 1.9518 28.017 1.9703 27.882 568.45 35.639 0.4925 542.15 561.84 171.25 34.487 275.9 223.06 
 9 30.354 5956.7 0.2386 0.8449 0.2387 0.4839 0.2288 0.8123 2.1411 37.349 2.1621 37.182 577.51 36.937 0.5406 545.62 618.73 188.59 41.687 333.49 297.45 
 10 33.809 6461.2 0.2526 0.8971 0.256 0.5214 0.247 0.8811 2.2996 47.018 2.3219 46.847 585.89 38.145 0.5806 548.89 666.46 203.14 48.242 385.94 374.77 
 11 40.267 6990.2 0.2714 0.9709 0.2728 0.5589 0.2633 0.9454 2.4752 59.328 2.4968 59.189 595.06 39.653 0.6238 552.1 718.15 218.89 55.909 447.27 473.51 
 12 41.19 6972.9 0.2706 0.9674 0.2724 0.5578 0.263 0.9433 2.4685 58.918 2.4914 58.747 595.33 39.603 0.6224 552.52 716.9 218.51 55.69 445.52 469.98 
 13 32.83 5960.2 0.238 0.8415 0.2384 0.4828 0.2283 0.81 2.1343 37.48 2.1561 37.301 578.23 36.893 0.5395 546.43 617.88 188.33 41.518 332.14 298.41 
 14 21.143 4966.3 0.2001 0.7013 0.1979 0.3967 0.1936 0.6799 1.7779 21.607 1.7987 21.457 564.25 34.6 0.4498 542.31 513.19 156.42 28.757 230.05 171.65 
 15 10.815 3968.2 0.1628 0.5668 0.1611 0.3207 0.1564 0.5455 1.433 11.329 1.4502 11.237 552.48 32.866 0.3625 538.33 412.07 125.6 18.608 148.86 89.894 
 16 2.6242 2965 0.1207 0.4183 0.1209 0.2395 0.1182 0.4106 1.0684 4.9067 1.0806 4.8661 542.53 31.501 0.2698 534.75 305.75 93.194 10.285 82.278 38.929 
                       

19-Feb-03 1 0.4241 1013.1 0.0379 0.1328 0.0388 0.0778 0.0401 0.1407 0.3514 0.3651 0.3494 0.3629 522 30.266 0.0872 521.2 97.585 29.744 1.0536 8.4285 2.9029 
 2 1.5413 2000.3 0.08 0.2808 0.0797 0.1598 0.0803 0.2824 0.723 1.409 0.7204 1.3978 526.64 30.811 0.1796 523.27 201.25 61.341 4.4795 35.836 11.182 
 3 5.381 2995.5 0.1223 0.4297 0.1221 0.2453 0.1185 0.4171 1.0921 4.7546 1.0907 4.7076 536.03 31.76 0.2722 528.21 306.51 93.426 10.333 82.66 

4 11.413 3986.4 0.1643 0.5791 0.1616 0.3255 0.1561 0.5507 1.4553 11.351 1.4558 11.231 547.39 33.121 533.27 411.79 125.51 18.537 148.29 89.848 
 5 17.517 4499.5 0.1843 0.6512 0.1811 0.3659 0.1754 0.6206 1.6377 16.281 1.6385 16.114 553.6 33.98 0.4098 535.61 464.72 141.65 23.55 188.4 128.91 
 6 23.322 4996.4 0.2025 0.7178 0.1994 0.4045 0.1942 0.6908 1.8132 21.779 1.8128 21.573 558.91 34.917 0.4533 536.85 514.6 156.85 28.853 230.83 172.58 
 7 22.187 4996.4 0.2024 0.7162 0.1993 0.4034 0.1942 0.6888 1.8085 22.396 1.8105 22.155 561.41 34.915 0.4531 539.27 515.55 157.14 28.871 230.97 177.24 
 8 10.066 3986.2 0.1629 0.5727 0.1613 0.3245 0.1561 0.55 1.4472 11.506 1.4492 11.375 548.83 33.091 0.3624 534.78 410.61 125.15 18.401 147.21 90.999 
 9 4.2027 2977.6 0.1212 0.4244 0.121 0.2425 0.1183 0.4154 1.0823 4.9075 1.0828 4.8534 538.05 31.727 0.2704 530.3 305.05 92.979 10.212 81.692 38.827 
                       
 10 3.8834 2997.2 0.1218 0.426 0.1227 0.2452 0.1187 0.4156 1.0868 4.818 1.0908 4.7525 540.85 31.747 0.2722 532.96 307.9 93.848 10.387 83.096 38.02 
 11 10.653 3975.3 0.1623 0.5698 0.1607 0.3227 0.1557 0.5475 1.44 11.197 1.4454 11.052 550.4 33.06 0.3612 536.4 409.93 124.95 18.331 146.65 88.419 
 12 17.04 4472.9 0.1825 0.6428 0.1798 0.3624 0.1751 0.6182 1.6234 16.047 1.6279 15.857 555.52 33.915 0.4071 537.7 462.52 140.98 23.295 186.36 126.85 
 13 20.718 4978.2 0.2011 0.7101 0.1989 0.4019 0.1936 0.6848 1.7968 22.259 1.8031 22.011 562.88 34.846 0.4512 540.86 514.12 156.7 28.7 229.6 176.08 

14 19.56 5002.6 0.2024 0.7146 0.2002 0.4045 0.1949 0.6897 1.8088 22.373 1.8156 22.116 563.12 34.908 0.4542 540.8 517.54 157.75 29.091 232.73 176.93 
 15 12.521 3964.8 0.1634 0.5729 0.1621 0.3251 0.1565 0.5493 1.4473 11.45 1.4549 11.295 551.9 33.086 0.3637 537.67 413.19 125.94 18.606 148.85 90.36 
 16 4.892 2961.1 0.1206 0.4204 0.1211 0.2415 0.1182 0.4129 1.0748 4.7446 1.0814 4.6732 542.84 31.695 0.2699 535.04 305.89 93.235 10.234 81.876 37.385 
                       

17 5.3564 2977.4 0.1208 0.4218 0.1207 0.2409 0.118 0.4127 1.0754 4.7641 1.0806 541.95 31.711 0.2697 534.18 305.4 93.087 10.207 81.654 37.558 
 18 11.262 3979.5 0.1628 0.5711 0.1604 0.3218 0.1558 0.5475 1.4404 11.354 1.4464 11.202 551.16 33.065 0.3616 537.11 410.63 125.16 18.374 146.99 89.616 

19 22.864 4965.2 0.2012 0.711 0.1975 0.3992 0.1939 0.687 1.7972 21.824 1.8027 21.572 562.1 34.85 0.4508 540.15 513.38 156.48 28.641 229.13 172.58 
20 22.535 4971.1 0.2018 0.7124 0.1982 0.4003 0.194 0.6863 1.7991 22.116 1.8062 21.852 563.25 34.865 0.4518 541.16 515 156.97 28.796 230.37 174.82 

 21 9.8706 3966.2 0.1632 0.5719 0.1615 0.3238 0.1569 0.5508 1.4465 11.471 1.4541 11.311 552.14 33.087 0.3635 537.92 413.07 125.9 18.586 148.69 90.486 
 22 3.8661 2984.9 0.1217 0.4242 0.1214 0.2421 0.1186 0.4146 1.0808 4.8921 1.087 4.82 542.77 31.718 0.2713 534.9 307.48 93.719 10.34 82.722 38.56 
                       

7-Feb-03 1 1.9837 1994.6 0.0796 0.2773 0.0798 0.1588 0.0792 0.2761 0.7122 1.337 0.7158 1.3306 529.31 30.617 0.1784 525.96 200.47 61.103 4.4604 35.683 10.645 
 2 4.5495 2991.3 0.1219 0.4251 0.1226 0.2443 0.1185 0.4137 1.0831 4.6937 1.0902 4.6654 538.06 31.574 0.272 530.21 93.55 10.403 83.223 37.324 
 3 9.4655 4007.3 0.1644 0.5762 0.1618 0.3241 0.157 0.5504 1.4507 11.353 1.4603 11.293 547.96 32.954 0.3649 533.74 413.07 125.9 18.761 150.09 90.342 
 4 17.914 4480.1 0.1823 0.6402 0.1793 0.3599 0.1752 0.6157 1.6159 15.633 1.6274 15.547 553.82 33.731 0.4067 536.08 461.39 140.63 23.357 186.85 124.38 
 5 19.231 4986.9 0.2011 0.7083 0.1984 0.3994 0.1942 0.6851 1.7928 21.641 1.8054 21.534 560.53 34.679 0.4514 538.58 513.29 156.45 28.833 230.66 172.27 
 6 26.358 5481.8 0.2188 0.7741 0.2191 0.4436 0.2115 0.7499 1.9676 28.33 1.9807 28.218 566.65 35.737 0.495 540.18 563.69 171.81 34.749 277.99 225.74 
 7 34.395 5997.3 0.2412 0.8572 0.2411 0.4906 0.2306 0.8214 2.1693 38.244 38.099 42.427 339.42 2.1843 576.21 37.133 0.5461 543.77 623.98 190.19 304.79 
 8 42.842 6480.5 0.2547 0.9084 0.2586 0.5292 0.2493 0.8938 2.3314 47.678 2.3464 47.567 583.48 38.367 0.5861 545.96 671.06 204.54 49.038 392.31 380.54 
 9 40.006 6495.8 0.2548 0.9079 0.2589 0.5296 0.2501 0.8962 2.3338 48.28 2.3477 48.167 583.96 38.383 0.5871 546.31 672.33 204.93 49.148 393.18 385.33 
 10 33.769 5963.2 0.2395 0.8495 0.2394 0.4863 0.2289 0.8139 2.1497 37.518 2.1665 37.334 576.73 37.002 0.5419 544.73 619.77 188.91 41.792 334.34 298.67 
 11 27.151 5477 0.2191 0.7727 0.2199 0.444 0.2115 0.7474 1.9641 29.031 1.9814 28.862 569.88 35.741 0.4957 543.19 566.06 172.54 34.911 279.29 230.89 
 12 21.445 4959.5 0.2013 0.7068 0.1997 0.401 0.1946 0.6843 1.7921 21.965 1.8095 21.804 563.68 34.688 0.4527 541.49 516.16 157.33 29.062 232.5 174.43 
 13 16.248 4467.2 0.1825 0.6384 0.1797 0.3595 0.1755 0.6149 1.6129 16.108 1.6288 15.98 557.42 33.731 0.4074 539.52 463.65 141.32 23.494 187.95 127.84 
 14 10.653 3959.1 0.163 0.5686 0.1619 0.3229 0.1561 0.5448 1.4362 11.294 1.4517 11.189 552.4 32.911 0.3629 538.23 412.49 125.73 18.625 149 89.512 
 15 8.9028 3704.6 0.1522 0.5301 0.1511 0.3008 0.1475 0.5141 1.345 9.2279 1.3601 9.1367 549.97 32.527 0.3397 537.56 385.92 117.63 16.324 130.59 73.094 
 16 4.5581 3462 0.142 0.494 0.1417 0.2817 0.1371 0.4774 1.2531 7.5748 1.2667 7.5015 547.27 32.171 0.3164 536.53 359.09 109.45 14.146 113.16 60.012 

17 3.7802 2974.3 0.1213 0.4209 0.1218 0.2417 0.118 0.41 1.0727 4.8218 1.0843 4.7741 542.83 31.548 0.2707 534.99 306.8 93.514 10.345 82.756 38.192 
 18 1.3109 1971.8 0.0794 0.2744 0.0797 0.1574 0.0792 0.274 0.7059 1.5352 0.714 1.5184 536.87 30.611 0.1781 533.49 201.54 61.429 4.473 35.784 12.147 
                       

29-Jan-03 1  2039.7 0.0819 0.2862 0.0813 0.1623 0.0813 0.2844 0.733 1.6541 0.7334 1.6257 534.7 30.919 0.1829 531.14 206.53 62.951 4.6682 37.346 13.006 
 2  2041.2 0.0814 0.2848 0.0809 0.1617 0.0809 0.2835 0.73 1.6625 0.7294 1.636 533.39 30.911 0.1819 529.88 205.21 62.547 4.6134 36.907 13.088 
 3  2980.5 0.121 0.4246 0.122 0.2446 0.1188 0.4175 1.0867 4.8918 1.0865 4.8091 540.81 31.845 0.2712 532.97 306.76 93.502 10.271 82.168 38.473 
 4  3476.8 0.1424 0.5009 0.1423 0.2861 0.1369 0.4821 1.2692 7.5969 1.2693 7.4682 545.34 32.482 0.3169 534.6 359.05 109.44 14.045 112.36 59.746 
 5  3973.6 0.1633 0.576 0.1613 0.325 0.1562 0.551 1.4521 11.32 1.4524 11.129 550.65 33.223 0.3629 536.53 411.82 125.52 18.437 147.49 89.036 
 6  4457.7 0.1811 0.6409 0.1779 0.3598 0.1747 0.6196 1.6204 15.764 1.6183 15.526 554.65 34 0.4044 537.08 459.24 139.98 22.909 183.27 124.21 
 7  4973.5 0.1997 0.7088 0.1981 0.4019 0.1938 0.689 1.7998 21.717 1.7981 21.393 561.6 34.956 0.4495 539.78 511.75 155.98 28.372 226.98 171.14 
 8  5477.2 0.2178 0.7765 0.2189 0.4469 0.2113 0.7557 1.9792 28.835 1.9752 28.454 567.5 36.04 0.4937 541.12 562.72 171.52 34.282 274.26 227.63 
 9  4952.1 0.1995 0.7075 0.1974 0.4003 0.1942 0.6904 1.7981 21.801 1.7973 21.467 562.24 34.952 0.4494 540.42 511.84 156.01 28.366 226.93 171.73 

172.63 
 562.55 513.22 

37.661 
 0.3639 

 

 4.6947 

 
 

306.92 

 

 
Table D1. Complete Data Listing (Continued) 
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